VOLUME 2

{ &
T s e

© Patrick Wardle

THE ART OF MAC MALWARE, VOLUME 2

THE ART OF
MAC MALWARE

Volume 2

Detecting
Malicioua Software

by Patrick Wardle

¢

no starch
press®

San Francisco

THE ART OF MAC MALWARE, VOLUME 2. Copyright © 2025 by Patrick Wardle.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

ISBN-13: 978-1-7185-0378-6 (print)
ISBN-13: 978-1-7185-0379-3 (ebook)

® Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-Gonzdlez
Production Editor: Jennifer Kepler
Developmental Editor: Frances Saux
Cover Illustrator: Garry Booth
Interior Design: Octopod Studios
Technical Reviewer: Tom McGuire
Copyeditor: Lisa McCoy
Proofreader: Audrey Doyle

Indexer: BIM Creatives, LLC

Library of Congress Control Number: 2024034450

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

[E]

To my loving and patient parents, Stephen and Norma.
And to Andy #UnaMas para siempre.

About the Author

Patrick Wardle is the founder of Objective-See, a nonprofit dedicated

to creating free, open source macOS security tools and organizing the
“Objective by the Sea” Apple security conference. He is also the co-founder
and CEO of DoubleYou, a cybersecurity startup focused on empowering the
builders of Apple-focused security tools. Having worked at both NASA and
the National Security Agency and having presented at countless security
conferences, he is intimately familiar with aliens, spies, and talking nerdy.

About the Technical Reviewer

Tom McGuire has been working in the security industry since the late
1990s. He is the chief technical officer of a cybersecurity firm and a senior
instructor at the Johns Hopkins Whiting School of Engineering, where he
teaches reverse engineering, operating system security, cryptology, and
cyber risk management. When not doing security stuff, he can be found
hanging out with his family and watching the Red Sox.

BRIEF CONTENTS

Foreword xvii
Acknowledgments Xix
INfrodUCHON . .« o o xxi
PART I: DATACOLLECTION.ttt ittt it ittt aennnnnnns 1
Chapter 1: Examining Processesottt 3
Chapter 2: Parsing Binaries. 39
Chapter 3: Code Signingot 75
Chapter 4: Network State and Statistics 101
Chapter 5: Persistencet 119
PART Il: SYSTEM MONITORING S 1
Chapter 6: Log Moniforingot 141
Chapter 7: Network Monitoring.o 155
Chapter 8: Endpoint Security. oot 179
Chapter 9: Muting and Authorization Events i 205
PART lll: TOOLDEVELOPMENTcciiiiiiiiiiiinnnnnns 231
Chapter 10: Persistence Enumerator. 233
Chapter 11: Persistence Monitor 253
Chapter 12: Mic and Webcam Monitor o 279
Chapter 13: DNS Monitorot 297
Chapter 14: Case Studies.ot 313

CONTENTS IN DETAIL

FOREWORD xvii
ACKNOWLEDGMENTS xix
INTRODUCTION xXi
What You'll Find in This Book xxiii
Who Should Read This Book® XXiV
The Code and Malware Specimens XXV
Development Environment. XXVi
Code Signing Requirements XXVi
Entfitlements Xxvii
Safely Analyzing Malware xxvii
Additional Resources XXix
Books XXix
Websiteso XXix

PART I: DATA COLLECTION 1

1
EXAMINING PROCESSES 3
Process Enumeration. 4
Audit Tokenso 5
Pathsand Names. 6
Identifying Hidden Files and Directories. 6
Obtaining the Paths of Deleted Binaries. 7
Validating Process Names 8
Process Arguments 9
Process Hierarchies 13
Findingthe Parent. 14
Returning the Process Responsible for Spawning Another. 16
Retrieving Information with Application Services APls 17
Environment Information 19
Code Signing . .« o vt 24
Loaded Libraries 24
OpenFiles 28
proc_pidinfo. 29
ISof © o 30
Other Information. 31
Execution Stateo 32
Execution Architecture 32
Start Time. . . o 34
CPU Utilization oo 35

Conclusiono 36

2

PARSING BINARIES 39
Universal Binariesot 39
INSPecting . . . o 40
Parsing 42
Mach-OHeaders. 50
Load Commandso 53
Extracting Dependencies. 54
Finding Dependency Paths 54
Analyzing Dependencies 56
Extracting Symbols. 59
Detecting Packed Binaries. 62
Dependencies and Symbols 63
Section and SegmentNames 63
Entropy Calculations 67
Detecting Encrypted Binaries. 70
Conclusion . . . oo 71
3
CODE SIGNING 75
The Importance of Code Signing in Malware Detection 76
Disk Images.ot 78
Manually Verifying Signatures 78
Extracting Code Signing Information 79
Extracting Notarization Information. 82
Runningthe Tool o 84
Packages 84
Reverse Engineering pkgutil 86
Accessing Framework Functions 88
Validating the Package 90
Checking Package Notarization i 91
Runningthe Tool o 92
On-Disk Applications and Executables 93
Running Processes 95
Detecting False Positives 96
Code Signing Error Codes oo 97
Conclusion . ..o 97
4
NETWORK STATE AND STATISTICS 101
Host-Based vs. Network-Centric Collection. 102
Malicious Networking Activityo 102
Capturing the Network State 105
Retrieving Process File Descriptors. o i 106
Extracting Network Sockets i 106
Obtaining Socket Details 107
Runningthe Tool 11
Enumerating Network Connections. i 111
Linking to NetworkStatistics o 113
Creating Network Statistic Managers 113

xii Contents in Detail

Defining Callback Logic. 114

Starting QUErIeso 115
Runningthe Tool 115
Conclusion . ..o o 17
5
PERSISTENCE 119
Examples of Persistent Malware. 120
Background Task Management 123
Examining the Subsystem 124
Dissecting sfltfool 127
Writing a Background Task Management Database Parser 130
Finding the Database Path 130
Deserializing Background Task Management Files. 131
AccessingMetadata 134
Identifying Malicious ltems 135
Using DumpBTM in Your Own Code.ot 136
Conclusion . .. oo 137

PART Il: SYSTEM MONITORING 139

6
LOG MONITORING 141
Exploring Log Information 142
The Unified Logging Subsystem 143
Manually Querying the log Utilityo oo 144
Reverse Engineering log APls 145
Streaming Log Data 146
Extracting Log Object Properties 148
Determining Resource Consumption. 151
Conclusion . . . oo 152
7
NETWORK MONITORING 155
Obtaining Regular Snapshots 156
DNS Monitoringo vttt e 157
Using the NetworkExtension Framework. 159
Activating a System Extension. L oo o 160
Enabling the Monitoring. o 161
Writing the Extension. 162
Filter Data Providers 170
Enabling Filtering 170
Writing the Extension. 171
Queryingthe Flow 173
Running the Monitor 174
Conclusion . .. oo 176

Contents in Detail

xiii

8

ENDPOINT SECURITY 179
The Endpoint Security Workflow. 180
Events of Inferest. 182
Clients, Handler Blocks, and Event Handling, 185
Creating a Process Monifor. 190
Subscribingto Events. 191
Extracting Process Objects 191
Extracting Process Information L 192
Stopping the Client 199
File MONItOIING . . . oot 200
Conclusion . ..o 203
9
MUTING AND AUTHORIZATION EVENTS 205
MUKING .« . 206
Mute Inversion. 209
Beginning Mute Inversion. L 210
Monitoring Directory Access.o 211
Authorization Events. 213
Creating a Client and Subscribingto Events. 213
Meeting Message Deadlines. 215
Checking Binary Originsot 217
Blocking Background Task Management Bypasses. 219
Building a File Protector 223
Conclusion . ..o 228

PART Ili: TOOL DEVELOPMENT 231

10

PERSISTENCE ENUMERATOR 233

Tool DeSign .« ot et e 234
Command Line Optionsottt 235
Plugrins . . oo 235
Persistent ltem Types 238

Exploring the Plug-inso o 240
Background Task Management. 241
Browser Extension. 242
Dynamic Library Insertion. 246
Dynamic Library Proxying and Hijacking 249

Conclusion . ..o 252

11

PERSISTENCE MONITOR 253

Enfitlements o 254
Applying for Endpoint Security Entitlements L. 254
Registering App IDs. . . . o oo oo 254

xiv Contents in Detail

Creating Provisioning Profiles,
Enabling Entitlements in Xcode
Tool Design . o oo
Plugins . . . oo
Background Task Management Events
XPC
Creating Listeners and Delegates
Extracting AuditTokens
Extracting Code Signing Details
Setting Client Requirements
Enabling Remote Connections.
Exposing Methods.
Initiating Connections
Invoking Remote Methods
Conclusion . . .ot
12
MIC AND WEBCAM MONITOR
Tool Design . . . oo
Mic and Camera Enumeration
Audio Monitoring
Camera Monitoring.ottt
Device Connections and Disconnections.
Responsible Process Identification
Triggering Scripfs.o
SIOPPING .«
Conclusion . . . oo
13
DNS MONITOR
Network Extension Deployment Prerequisites.
Packaging the Extension
Tool DeSign . . o oot
The APp. - o
The EXIensionot
Interprocess Communication. i
Building and Dumping DNS Caches.
Blocking DNS Traffic
Classifying Endpointso
Conclusion . . . oo
14
CASE STUDIES
Shazam’s Mic Access. oot
DazzleSpy Detection
Exploit Detection.
Persistence
Network ACCess . . . oottt

Contents in Detail

279

280
281
282
285
286
288
291
293
294

297

298
299
301
301
302
303
304
307
310
311

XV

The 3CX Supply Chain Attack 319

File Monitoring o 320
Network Monitoring 322
Process Moniforingo 323
Capturing Self-Deletion 325
Detecting Exfiltration 326
Conclusion . . .ot 327
INDEX 329

Xvi

Contents in Detail

FOREWORD

I first encountered Patrick while writing a book about ARM assembly
internals and reverse engineering. Apple had recently released its ARM-
based Apple Silicon chip, and Patrick was the first to publicly analyze
what was then the only known malware sample compiled for it. I could
tell Patrick was someone who stayed ahead of the curve and embraced
technological changes, so we started collaborating on a chapter about
reversing ARM64 macOS malware.

As the macOS ecosystem and architecture evolved, Patrick continued to
research macOS threats despite architectural changes, consistently contrib-
uting to the malware analysis and detection community. His free resources,
including timely and comprehensive research on the latest macOS threats,
the nonprofit conference Objective by the Sea, numerous educational ini-
tiatives, and open source detection tools, have impacted countless people in
this industry.

Writing security tools for macOS requires both time and resilience.

We all know how quickly technology can advance, and Apple Silicon intro-
duced changes so profound that they affected the processor architecture.
Whether you are new to the field or an experienced professional, keeping
up with changes to the ecosystem you focus on is crucial for success. Patrick
has come up with novel ways to make threat detection possible on macOS.
(You know you're doing something right when major antivirus companies
attempt to use your detection code commercially, without permission.)

Foreword

In The Art of Mac Malware, Volume 2, Patrick tackles proactive defense,
focusing on specific programming techniques and macOS internals for
detecting and countering threats. This book’s in-depth approach sets it
apart: instead of merely analyzing a single malware sample, it describes
the APIs and techniques necessary to identify infection patterns, automate
macOS threat detection, and develop custom tools. You’ll learn how to cre-
ate software that identifies infections in real time, moving beyond postmor-
tem analysis.

If you want to study these techniques, you’d better learn from the best—
someone who has built such tools, has battle-tested them in practice, and con-
tinues to adapt to any changes that could render these techniques ineffective.

Maria Markstedter
Founder of Azeria Labs and
Forbes Person of the Year in Cybersecurity

ACKNOWLEDGMENTS

A computer is made up of countless components crafted and assembled by
many individual engineers. Although I'm pretty sure I'm not a computer, I
too feel I am a product of many individuals, and despite the single name on
the cover, you wouldn’t be holding this book in your hands without them.

First and foremost, I want to acknowledge my parents, who expertly
navigated the complexities of raising a child, deftly sublimating my rebel-
lious tendencies into a love of learning that has benefited me ever since.
Similarly, I am forever grateful to my older brother, Keelian, who has chal-
lenged and inspired me. (Nothing like a never-ending sibling rivalry to
bring out the bestin us . . . right?)

I also want to thank my many co-workers and colleagues at the National
Security Agency and in the larger infosec community, whose guidance
and support have been invaluable over the years. Though there are far
too many to name in this short section, a few—mnamely, my close friends
and colleagues Kasey, Tom, Josh, and Jon—have had a profoundly positive
influence on both my personal life and career. Others, such as the brilliant
Jonathan Levin and Arnaud Abbati, have selflessly provided indispensable
technical insights and mentorship, giving me the confidence and expertise
to write this book. I am lucky to count both as close friends. I also want to
thank my DoubleYou co-founder, Mike, for our decade-spanning friendship
and for partnering with me as we build something epic together.

To my confidant, companion, and muse, Andy: words cannot express
how grateful I am for your insights, guidance, support, and love.

I also want to acknowledge the many patrons of Objective-See, whose
continued support made this book, and my vision of free, open source Mac
security tools, a reality. The companies that participate in the Friends of
Objective-See programs not only support the mission of the Objective-See
Foundation but also have helped this book see the light of day. For that, I
am forever grateful. These Friends of Objective-See include Kandji, Jamf,
1Password, MacPaw, Palo Alto Networks, Malwarebytes, iVerify, Huntress,
SmugMug, Halo Privacy, and the Mitten Mac.

Last, but certainly not least, are the many individuals who worked
directly on the book. These delightful (and, yes, sometimes strict) humans
kept me roughly on schedule to bring this book to fruition. They include
my good friend Tom McGuire (Tmac), who put countless hours into the
rather thankless job of technical editor, and the incredibly professional and
hardworking crew at No Starch Press, including founder Bill Pollock and
the book’s main editor, Frances Saux.

XX Acknowledgments

INTRODUCTION

We are, unfortunately, living in a golden age
of Mac malware. Sales of Mac computers

continue to flourish year over year,! while
industry reports predict that Mac will become
the dominant platform in enterprise environments.?
As Apple’s share of the global computer market grows,
Macs have become an ever-more compelling target
for opportunistic hackers and malware authors. Some
studies have even found, on average, more threats and
malware on Mac systems than on Windows ones.?

When it comes to protecting Macs and their users, analyzing malware
(the topic of The Art of Mac Malware, Volume 1) is only half the battle.
Detecting malicious code in the first place is the other, perhaps even more
important, piece. There are many approaches to detecting malicious
code, each with pros and cons. At one end of the detection spectrum, we

Introduction

can leverage databases of malware signatures. By scanning binaries for
sequences of malicious bytes, we can efficiently identify known threats.
However, we fail to detect new malware or variants. This downside is trou-
blesome. To see why, consider the case of the malware known as FruitFly.
Carefully crafted by a single programmer and deployed in a highly targeted
manner, it remained undetected for over a decade, as no antivirus program
contained a signature to detect it. The malware spied on unknowing victims
using Macs’ mics and webcams, leading to damaging real-life consequences.4

At the other end of the detection spectrum are behavior-based heuristics,
which focus on a malicious program’s actions or impact on a system. To
understand this approach, consider the last time you were sick. Perhaps
your illness started with a runny nose, a headache, a sore throat, or a
stomachache. While you probably didn’t know exactly what pathogen had
infected you, your body’s symptoms indicated that you were no longer your
normal, healthy self. We can use a similar strategy to generically and heuris-
tically detect digital pathogens: by looking for symptoms and anomalies.

Even novel and stealthy malware specimens will produce observable
events when they interact with a system. Some, such as the spawning of a
newly persisted unsigned process, may be easy to detect. Others, like the
surreptitious planting of a trojanized dynamic library or a covert exfiltra-
tion channel, are more subtle. Regardless, if we can programmatically
detect these behaviors, we should be able to ascertain whether a system is
infected and, by identifying the responsible process, pinpoint the infection.

This book focuses on heuristic-based approaches, which are the only
way to combat the sophisticated and never-before-seen threats that are tar-
geting macOS with increasing frequency. We’ll write code capable of detect-
ing anomalies and then pinpoint software that has maliciously infiltrated a
system. In the process, we’ll dive into the macOS operating system, touch-
ing on topics such as private frameworks, reverse engineering proprietary
system components, and much more.

Of course, the heuristic-based detection approach has some down-
sides. While it should be able to pinpoint any malicious item on a system, it
likely won’t be able to identify the specific malware strain. For example, it
should notice an unauthorized program surreptitiously accessing the mic or
webcam, but it won’t know whether the responsible process is the malware
FruitFly. Is this a significant downside? I don’t believe so, as the malware
responsible for the infection may be unknown anyway, and you can always
deploy a signature-based detection engine to cover the known basics.

Another challenge is that heuristic-based detections can suffer from
false positives. For example, malware authors often leverage executable
packers to obfuscate their malicious creations, but so could legitimate
software developers. Thus, no heuristic-based detection approach should
focus on a single heuristic when attempting to classify an item as malicious.
Instead, the detection should always look for multiple anomalous behaviors
and leverage approaches that reduce false positives, such as code signing
information, before flagging something as suspicious or likely malicious.

If you have the luxury to do so, you could enlist a human to validate any
flagged items.

What You’ll Find in This Book

At its core, this book describes how to write code to detect macOS malware.
It’s broken into three parts.

Just as a doctor performs tests and collects data to make a diagnosis, so
too must malware detectors. In Part I: Data Collection, we discuss program-
matic methods of collecting the data snapshots essential for detecting symp-
toms of infections. We’ll start simple, by describing methods of enumerating
and querying running processes on a system. In subsequent chapters, we’ll
dive into more advanced concepts, such as directly parsing binaries, extract-
ing and validating code signing information, and uncovering persistence by
interacting with proprietary system components. Where relevant, we’ll show
snippets of malware as examples. The chapters in this part are as follows:

Chapter 1: Examining Processes Because the majority of Mac malware
specimens run as stand-alone processes, examining various information
and metadata about each running process is a great place to start when
seeking to uncover infections.

Chapter 2: Parsing Binaries Backing any process on a macOS system
is a universal or Mach-O binary. In this chapter, we show how to parse
these binaries to reveal anomalies.

Chapter 3: Code Signing Any heuristic-based detection approach is
prone to false positives. By extracting and validating code signing infor-
mation, as we do in this chapter, we can reduce false positives while
increasing the effectiveness of any malware detection tool.

Chapter 4: Network State and Statistics This chapter describes meth-
ods of programmatically capturing snapshots of a host’s network state
and network statistics. Most Mac malware will access the network, and
these snapshots should reveal this unauthorized network access.

Chapter 5: Persistence Malware will persist in order to survive a sys-
tem reboot. Persistence causes modifications to the host, and this chap-
ter highlights exactly how to programmatically detect these changes.

While Part I covers methods of obtaining snapshots of data, Part II:
System Monitoring covers continuous approaches to monitoring a system
for symptoms of an infection. For example, we’ll discuss frameworks and
application programming interfaces (APIs) that allow us to monitor the sys-
tem logs and create powerful file, process, and network monitors. This part
includes the following chapters:

Chapter 6: Log Monitoring The system, or universal, log contains a
myriad of data that can reveal most infections. Apple doesn’t provide
public APIs to ingest streaming log messages, so this chapter delves into
the private frameworks and APIs you can use in your own tools.

Chapter 7: Network Monitoring This chapter is dedicated to Apple’s
NetworkExtension framework, whose APIs provide the capabilities for
building powerful network monitoring tools that can uncover any mal-
ware that uses the host’s network.

Introduction xxiii

Chapter 8: Endpoint Security If youre building comprehensive mal-
ware detection tools on macOS, you should make use of the powerful
Endpoint Security framework and its APIs. This chapter introduces
Endpoint Security.

Chapter 9: Muting and Authorization Events This chapter covers
more advanced Endpoint Security topics, including authorization
events, muting, and more.

In 2015, I founded Objective-See, which is now a nonprofit organiza-
tion that makes free, open source security tools for macOS. Part I1I: Tool
Development delves into several of Objective-See’s most popular tools.
Capable of generically detecting a wide range of macOS malware, these
tools leverage many of the approaches covered in Parts I and II. Once you
understand their design and internals, you’ll be well on the way to building
your own malware detection tools. We’ll end the book by pitting these tools
against a wide range of sophisticated macOS malware. For each specimen,
we’ll discuss its infection vector, methods of persistence, and capabilities
and then highlight how the tools can uncover these symptoms. The chap-
ters in this part are as follows:

Chapter 10: Persistence Enumerator Who’s there? Most Mac malware
persists to survive system reboots, so a tool capable of enumerating all
persistent software should reveal any persistently installed malware.
This chapter covers exactly such a tool: KnockKnock.

Chapter 11: Persistence Monitor Inspired by its sibling KnockKnock,
BlockBlock leverages Endpoint Security to detect malware by monitor-
ing persistence events in real time.

Chapter 12: Mic and Webcam Monitor Some of the most insidious
Mac malware specimens spy on victims via the webcam or listen to them
via the mic. This chapter focuses on OverSight, a tool that leverages
core audio and media APIs as well as the logging subsystem to detect
malware accessing these devices.

Chapter 13: DNS Monitor Malware attempting to connect to remote
domains—for example, for tasking or to exfiltrate data—will generate
DNS traffic. This chapter shows how DNSMonitor leverages Apple’s
NetworkExtension framework to monitor and block any unauthorized
DNS traffic on a macOS host.

Chapter 14: Case Studies It’s one thing to make claims about the
effectiveness of security tools and quite another to back them up.

In this final chapter, we pit our security tools against several notably
sophisticated and stealthy malware specimens to see how they stack up.

Who Should Read This Book?

You'll get the most out of this book if you understand cybersecurity fun-
damentals, malware basics, and programming. These aren’t prerequisites,
however, and I’ll explain all important concepts. You’ll also find it helpful

XXiv Introduction

to read my other book, The Art of Mac Malware, Volume 1 (No Starch Press,
2022), which will introduce you to foundational macOS malware topics we
won’t cover again here. Beyond these considerations, I wrote this book with
particular readers in mind:

Students As an undergraduate studying computer science, I had a keen
interest in understanding and detecting computer viruses and yearned
for a book such as this one. If you're working toward a technical degree
and would like to learn more about malware detection approaches, per-
haps to enhance or complement your studies, this book is for you.

Malware analysts My career as a malware analyst began at the National
Security Agency, where I studied Windows-based malware and exploits
that targeted US military systems. When I left the agency, I began
studying macOS threats but encountered a lack of resources on the
topic. This book aims to fill this gap. If you're a Windows or Linux mal-
ware analyst (or even a Mac malware analyst hoping to grow your skills),
this book should provide you with insight into how to detect threats tar-
geting macOS systems.

Mac system administrators The days of the homogeneous Windows-
based enterprise have largely disappeared. Today, Macs in the enterprise
are commonplace, giving rise to dedicated Mac system administrators
and (unfortunately) malware authors focused on enterprise systems
running macOS. If you're a Mac system administrator, it’s imperative
that you understand how to detect the threats targeting the systems you
seek to defend. This book aims to provide such an understanding (and
much more).

Developers Atits core, this book presents approaches to writing code
capable of generically detecting Mac malware. If your job involves writ-
ing security-focused tools for macOS, this book will be useful to you.

Even if you're not a programmer, you may find a book on the program-
matic detection of malware to be worth a read. Detecting malware involves
much more than just writing code. We’ll delve into macOS internals, touch
on reverse engineering topics, and discuss various malware specimens,
including their capabilities and functionality.

The Code and Malware Specimens

You can access all code samples, malware specimens, and tools discussed in

this book at https://github.com/objective-see. The TAOMM repository organizes
code samples by chapter, and the Malware repository contains an encrypted
sample of each malware specimen. Use the password infect3d to decrypt the

samples.

m The code in the TAOMM repository is provided largely for illustrative purposes, pri-
oritizing brevity over other aspects such as comprehensive error checking. As such,
it should not be used verbatim, for example, in deployed security products. Keep in
mind also that the collection in the Malware repository contains live malware. Please
don’t infect yourself! (Or if you do, at least don’t blame me.)

Introduction XXV

https://github.com/objective-see

xxvi

The book aims to present language-agnostic algorithms and approaches,
but the majority of the code herein is written in Objective-C. I chose not
to use Swift, a great language for writing Apple apps, because it poses
specific challenges in the context of security tools. For example, the book
often leverages private frameworks, which are easy to access in Objective-C
but would require additional components, such as bridging headers, in
Swift. Similarly, interfacing with frameworks that expose interfaces and
APIs in C, such as the all-important Endpoint Security, is straightforward
in Objective-C. Accessing these interfaces in Swift often involves a mad-
dening amount of type-casting and unwrapping of OpaquePointer and
UnsafeMutablePointer values.

I wrote all code on macOS 14 and tested it on recent versions of macOS,
including 13, 14, and 15. Where relevant, I'll discuss coding approaches
that diverge across versions (for example, when an older API has been
replaced by a more modern counterpart). The discussion will allow you to
write tools compatible with multiple versions of the operating system and
ensure that you continue to support older versions. To discover any new
techniques that become available as the operating system updates in the
future, check out the Objective-See GitHub repositories for up-to-date ver-
sions of my open source security tools, which implement the majority of the
code discussed in this book.

To help you piece together disparate parts of the larger programs pre-
sented over the course of each chapter, I've numbered the book’s code list-
ings using sequential listing numbers (such as Listing 1-1, Listing 1-2, and
so on). Malware samples and command line examples won’t have listing
numbers.

Development Environment

Introduction

Before you begin, I recommend installing Xcode, Apple’s integrated devel-
opment environment (IDE) and the de facto product for creating security
tools on macOS. Available for free on the official Mac App Store, Xcode
offers a user-friendly platform for developing software. I used Xcode to write
and compile all code samples and tools in this book, so I suggest having a
basic understanding of this tool. While I don’t provide a detailed guide on
Xcode usage here, many excellent free tutorials are available online.

Code Signing Requirements

Speaking of compiling code: if you’ve dabbled in software development on
macOS, you've likely run into challenges related to Apple’s code signing
requirements or, worse, entitlements. For security reasons, Apple checks a
program’s code signing information before allowing it to run. (We discuss
code signing in more detail in Chapter 3.)

Luckily, macOS allows code to be signed in an ad hoc manner, mean-
ing you don’t have to shell out $99 to Apple for a Developer ID if you're
developing security tools that will run locally. In Xcode, under Signing and

Capabilities, check the Automatically Manage Signing option and make
sure the Signing Certificate is set to Sign to Run Locally.

Entitlements

Tools that leverage system extensions or Endpoint Security require special
entitlements, such as com.apple.developer.endpoint-security.client, to run. In
Part III, we cover how to obtain these entitlements from Apple to build
distributable tools. Obtaining entitlements requires a paid Developer ID
account, however.

For local development and testing, you can work around entitlement
requirements by disabling System Integrity Protection (SIP).® Apple pro-
vides documentation on how to disable SIP, which involves booting your
Mac into Recovery Mode to run the command csrutil disable.®

You’ll also have to disable Apple Mobile File Integrity (AMFI); other-
wise, entitled binaries that aren’t wholly signed and notarized won’t run.
With SIP disabled, you can disable AMFI by executing the following, with
root privileges, from the terminal:

nvram boot-args="amfi_get out of my way=1"

Use nvram -p to confirm the boot arguments were set correctly. Finally,
reboot.

It’s worth stressing that disabling these macOS security mechanisms
greatly reduces the security of the system. As such, it’s best to do so only
within a virtual machine or on a dedicated development test machine. To
re-enable SIP in Recovery Mode, run csrutil enable, and to re-enable AMFI,
delete the boot arguments by running nvram -d boot-args.

Safely Analyzing Malware

This book demonstrates many programmatic techniques for detecting Mac
malware. In the book’s final chapter, you can even follow along as we pit
our tools against various malware specimens. If you plan to run the code
snippets in the book or build and test your own tools against this malware,
be sure to handle the specimens with the utmost care.

One approach to malware analysis is to use a stand-alone computer as
a dedicated analysis machine. You should set up this machine in the most
minimal of ways, with services such as file sharing disabled. In terms of
networking, the majority of malware will require internet access to fully
function (for example, to communicate with a command-and-control
server for tasking), so you should connect your machine to the network in
some manner. At a minimum, I recommend routing the network traffic
through a VPN to hide your location from any attacker who might be on
the other end.

However, leveraging a stand-alone computer for your analysis has down-
sides, including cost and complexity. The latter becomes especially appar-
ent if you want to revert the analysis system to a clean baseline state (for

Introduction Xxvii

XXV

Introduction

example, to rerun a sample or when analyzing a new specimen). Although
you could reinstall the operating system or, if using Apple File System
(APFS), return to a baseline snapshot, these are both time-consuming
endeavors.

To address these drawbacks, you can instead leverage a virtual machine
for your analysis system. Various companies, such as VMware and Parallels,
offer virtualized options for macOS systems. The idea is simple: virtual-
ize a new instance of the operating system that you can isolate from your
underlying environment and, most notably, revert to its original state at the
click of a button. To install a new virtual machine, follow the instructions
provided by each vendor. This typically involves downloading an operating
system installer or updater, dragging and dropping it into the virtualization
program, and then clicking through the remaining setup.

Unfortunately, Apple Silicon systems have limitations when it comes to virtualizing
macOS. Vendors such as Parallels provide prebuilt virtual machines compatible with
Apple Silicon but don’t yet support features such as snapshots.

Before performing any analysis, make sure to disable any sharing
between the virtual machine and the base system. For example, it would be
rather unfortunate to run a ransomware sample only to find that it has also
encrypted any shared files on your host system. Virtual machines also offer
options for networking, such as host-only and bridged. The former will
exclusively allow network connections with the host, which may be useful in
various analysis situations, such as when you’re setting up a local command-
and-control server.

I noted that the ability to revert a virtual machine to its original state
can greatly speed up malware analysis by allowing you to return to earlier
stages in the analysis process. You should always take a snapshot before you
begin your analysis so you can bring the virtual machine back to a known
clean slate when you’re done. During your analysis session, you should also
make judicious use of snapshots. For example, take a snapshot immediately
prior to allowing the malware to execute some core logic. If the malware
fails to perform the expected action (perhaps because it detected one of
your analysis tools and prematurely exited), or if your analysis tools failed
to gather the data required for your analysis, simply revert to the snapshot,
make any necessary changes to your analysis environment or tools, and
then allow the malware to re-execute. On dedicated analysis machines or
virtual machines that don’t support snapshots, APFS snapshots are likely
your best bet.

The main drawback to the virtual machine analysis approach is that
malware may contain logic to thwart virtual machines. If the malware can
successfully detect that it’s being virtualized, it will often exit in an attempt
to avoid continued analysis. See Chapter 9 of The Art of Mac Malware,
Volume 1, for approaches to identifying and overcoming this logic.

For more information about setting up an analysis environment, includ-
ing the specific steps for configuring an isolated virtual machine, see Phil
Stokes’s How to Reverse Malware on macOS Without Getting Infected.7

Additional Resources

Notes

For further reading, I recommend the following resources.

Books

The following list contains some of my favorite books on topics such as
reverse engineering, macOS internals, and general malware analysis. While
a few of these books are older, the core reversing and analysis topics should
remain timeless.

Blue Fox: Arm Assembly Internals and Reverse Engineering by Maria
Markstedter (Wiley, 2023)

x86 Software Reverse-Engineering, Cracking, and Counter-Measures by
Stephanie and Christopher Domas (Wiley, 2024)

The macOS/iOS (*OS) Internals trilogy by Jonathan Levin
(Technologeeks Press, 2017)

The Art of Computer Virus Research and Defense by Péter Szor (Addison-
Wesley Professional, 2005)

Reversing: Secrets of Reverse Engineering by Eldad Eilam (Wiley, 2005)

OS X Incident Response: Scripting and Analysis by Jaron Bradley
(Syngress, 2016)

Websites

There used to be a dearth of information about Mac malware analysis
online. Today, the situation has greatly improved. Several websites collect
information on this topic, and blogs such as my very own on the Objective-
See website are dedicated to Mac security topics. The following is an inex-
haustive list of some of my favorites:

https://papers.put.as: A fairly exhaustive archive of papers and
presentations on macOS security topics and malware analysis

https://themittenmac.com: The website of the noted macOS security
researcher and author Jaron Bradley that includes incident response
tools and threat-hunting knowledge for macOS

https://objective-see.org/blog.html: My blog, which for the last decade has
published my research and that of fellow security researchers on the
topics of macOS malware, exploits, and more

. “Worldwide PC Shipments Decline Another 15.0% in the Third Quarter

of 2022, According to IDC Tracker,” Business Wire, October 9, 2022,
https://www.businesswire.com/news/home/20221009005049/en/Worldwide-PC
-Shipments-Decline-Another-15.0-in-the-Third-Quarter-of-2022-According-to
-IDC-Tracker.

Introduction XXix

https://papers.put.as
https://themittenmac.com
https://objective-see.org/blog.html
https://www.businesswire.com/news/home/20221009005049/en/Worldwide-PC-Shipments-Decline-Another-15.0-in-the-Third-Quarter-of-2022-According-to-IDC-Tracker
https://www.businesswire.com/news/home/20221009005049/en/Worldwide-PC-Shipments-Decline-Another-15.0-in-the-Third-Quarter-of-2022-According-to-IDC-Tracker
https://www.businesswire.com/news/home/20221009005049/en/Worldwide-PC-Shipments-Decline-Another-15.0-in-the-Third-Quarter-of-2022-According-to-IDC-Tracker

XXX

Introduction

. “Jamf Q3 Data Confirms Rapid Mac Adoption Across the Enterprise,”

Computer World, November 11, 2022, https://www.computerworld.com/article/
3679730/jamf-q3-data-confirms-rapid-mac-adoption-across-the-enterprise. html.

. “Malwarebytes Finds Mac Threats Outpace Windows for the First Time

in Latest State of Malware Report,” Malwarebytes, February 11, 2020,
https://www.malwarebytes.com/press/2020/02/11/malwarebytes-finds-mac
-threats-outpace-windows-for-the-first-time-in-latest-state-of-malware-report.

. US Department of Justice, Office of Public Affairs, “Ohio Computer

Programmer Indicted for Infecting Thousands of Computers with
Malicious Software and Gaining Access to Victims’ Communications
and Personal Information,” press release no. 18-21, January 10, 2018,
https://www.justice.gov/opa/pr/ohio-computer-programmer-indicted-infecting
-thousands-computers-malicious-software-and.

. “System Extensions and DriverKit,” Apple, accessed May 25, 2024,

https://developer.apple.com/system-extensions/.

. “Disabling and Enabling System Integrity Protection,” Apple, accessed

May 25, 2024, https://developer.apple.com/documentation/security/disabling
_and_enabling_system_integrity_protection?language=objc.

. Phil Stokes, How to Reverse Malware on macOS Without Getting Infected,

August 14, 2019, hitps://go.sentinelone.com/rs/327-MNM-087/images/reverse
_mw_final_9.pdf.

https://www.computerworld.com/article/3679730/jamf-q3-data-confirms-rapid-mac-adoption-across-the-enterprise.html
https://www.computerworld.com/article/3679730/jamf-q3-data-confirms-rapid-mac-adoption-across-the-enterprise.html
https://www.malwarebytes.com/press/2020/02/11/malwarebytes-finds-mac-threats-outpace-windows-for-the-first-time-in-latest-state-of-malware-report
https://www.malwarebytes.com/press/2020/02/11/malwarebytes-finds-mac-threats-outpace-windows-for-the-first-time-in-latest-state-of-malware-report
https://www.justice.gov/opa/pr/ohio-computer-programmer-indicted-infecting-thousands-computers-malicious-software-and
https://www.justice.gov/opa/pr/ohio-computer-programmer-indicted-infecting-thousands-computers-malicious-software-and
https://developer.apple.com/system-extensions/
https://developer.apple.com/documentation/security/disabling_and_enabling_system_integrity_protection?language=objc
https://developer.apple.com/documentation/security/disabling_and_enabling_system_integrity_protection?language=objc
https://go.sentinelone.com/rs/327-MNM-087/images/reverse_mw_final_9.pdf
https://go.sentinelone.com/rs/327-MNM-087/images/reverse_mw_final_9.pdf

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

