
I N D E X

A
Activity Monitor utility, 8, 30–31,

33–34, 46
addObserver:selector:name:object:

method, 286–287
advanced persistent threats (APTs),

13–14, 104–105.
See also persistence

AF sockets, 105
Alchimist attack framework, 103
AMFI. See Apple Mobile File Integrity
analyzing malware safely, xxvii–xxviii
anchor apple generic requirement, 94
anchor apple requirement, 94, 96–97
app IDs, registering, 254–255
Apple File System (APFS), xxviii
Apple Mobile File Integrity (AMFI),

181, 254
disabling, xxvii, 160, 181
entitlements and, xxvii

Application Services APIs, 17–19
APTs (advanced persistent threats),

13–14, 104–105.
See also persistence

ARC (automatic reference counting),
18, 211

arguments, process, 9–13, 197–199
ARM binaries, 32
Art of Mac Malware, The, Volume 1

(Wardle), xxv
audio monitoring

Oversight tool, 282–285
Shazam widget, 313–315

audit tokens, 5–6
Endpoint Security process

monitor, 192
mute inversion via, 210
obtaining code object references

via, 95–96
XPC and, 266–268

authorization events, Endpoint
Security, 213–222

blocking Background Task
Management bypasses,
219–222

checking binary origins, 217–219
meeting message deadlines, 215–217
origin of, 183
subscribing to, 213–215

automatic reference counting (ARC),
18, 211

bridging, 80
AutoRuns tool, 233
AVFoundationAudioObjectAddProperty

ListenerBlock API, 282
AVFoundation framework, 58

adding a property listener,
283–284

device enumeration, 281
extracting property values, 285
property listener block, 282
removing a property listener, 294

B
Background Task Management (BTM),

2, 123–136
accessing metadata, 134–135
BlockBlock tool and, 261–265
blocking bypasses, 219–222
deserialization, 130–134
DumpBTM project, 130–137
event monitoring logic, 263
!nding database path, 130–131
identifying malware, 135–136
initWithCoder: methods, 132–134
interaction with database, 124–127
ItemRecord class, 131–133
itemsByUserIdentifier

dictionary, 131
KnockKnock tool and, 241–242

330!!!Index

Background Task Management
(continued)

serialization, 126–127
sfltool utility, 127–130

behavior-based heuristics.
See also heuristic-based
detection approach

de!ned, xxii
false positives, 75

binaries. See also Mach-O binaries
encrypted, 70–71
packed binaries, 62–70
universal binaries, 39–50

Black Mirror (TV show), 279
BlockBlock tool, 253–276

alerts, 257
Background Task Management,

261–265
DazzleSpy and, 319
Endpoint Security and, 181
entitlements, 254–256
launch daemon, 257–258
login item, 257
message deadlines and, 216
notarization mode, 213
plug-ins, 258–261
3CX supply chain attack, 324–325
XPC, 265–276

blocking DNS traf!c, 307–310
closing local "ow, 309
closing remote "ow, 309
extracting answers from A record,

308–309
name error, 309
NXDOMAIN response, 309–310
response packets, 308
saving DNS questions and answers

to cache, 305
bridging, 80

browser extensions, 242–245
BTM. See Background

Task Management

C
CalendarFree.app, 10–13
callback logic, 114–115
camera monitoring, 285–286.

See also Oversight tool
webcam, 142, 279–280

case studies, 313–326
DazzleSpy malware, 315–319
Shazam, 313–315
3CX supply chain attack, 319–326

certi!cate authority chain, 80
CFBundleCopyExecutableArchitectures

ForURL API, 250
chained supply chain attack, 320
checkSignature project, 76, 79, 84, 88,

94–95
Chropex (ChromeLoader), 9
clients

Endpoint Security, 185, 199–200
XPC, 269–271

CloudMensis malware, 40–41, 44–49,
52, 54, 56

code signing, 75–76
ad hoc signatures, 81–82
Apple requirements for, xxvi–xxvii
de!ned, 24
disk images and, 78–84
Endpoint Security process

monitor, 195–197
error codes, 97
false positives and, 75, 96–97
importance of in malware

detection, 76–78
notarization, 77, 82–84
on-disk Mach-O binaries and,

93–95
in packages, 84–93
revocations, 77
running processes and, 95–96
XPC and, 268–271

codesign utility, 78–79, 85, 93, 129, 256
CoinMiner malware, 8, 33
CoinTicker malware, 317
Coldroot malware, 28–29, 63
com.apple.developer.endpoint-security.client

entitlement, xxvii, 180
com.apple.quarantine extended

attribute, 316–317
Contents/Library/SystemExtensions/

directory, 299, 303
CoreMediaIO framework, 285–286

adding a property listener, 285
core media I/O subsystem, 142,

151–152, 289–291
CPU utilization, processes, 35–36

Index!!!331

computing CPU percentage in use,
35–36

flavor argument, 35
streaming log messages, 151

CreativeUpdate malware, 79, 84
Crisis malware, 142, 280, 314
CrowdStrike, 9, 320
CSCommon.h !le, 97

D
DA* APIs, 56–57
data collection, 1–2. See also code

signing; network state
and statistics; parsing
binaries; processes

persistence, 119–137
Background Task

Management, 123–136
DazzleSpy malware, 121–123
DumpBTM project, 130–137
LaunchAgents directories,

121–123
WindTail malware, 120–121

DazzleSpy malware, 7, 23, 33, 127, 220
code signing, 324
exploit detection, 315–317
extracting symbols, 59–60, 62
network access, 319
persistence and, 121–123, 317–319

default mute set, 210
delegates and delegate methods

DNSMonitor, 301
network monitoring, 168, 172
system extensions, 161, 163
XPC, 266

dependencies, binary
analyzing, 56–59
!nding dependency paths, 54–56
packer detection and, 63

deserialization, 130–134
detection heuristics. See heuristic-based

detection approach
device connections and disconnections,

286–288
disabling

Apple Mobile File Integrity, xxvii,
160, 181

System Integrity Protection, xxvii,
160, 181

DiskArbitration framework, 54, 56
disk images

ad hoc signatures, 80
certi!cate authority chain, 81
code object references, 80–81
code signing and, 78–84
extracting code signing

information, 79–82
manually verifying signatures,

78–79
notarization status, 82–84
static code reference, 80
verbose output, 79

dispatch_semaphore_wait API, 216
DNS cache dumping, 304–307
DNSMonitor, 297–311

blocking DNS traf!c, 307–310
classifying endpoints, 310
DNS cache dumping, 304–307
domain name registrar, 310
historical DNS records, 310
interprocess communication,

303–304
network extensions, 298–303
printing DNS packet to universal

log, 303–304
provisioning pro!les, 298–299

DNS monitoring, 157–169
activating system extensions,

160–161
identifying responsible processes,

168–169
NetworkExtension framework,

159–160
parsing DNS requests, 164–165
parsing DNS responses, 165–168
writing system extensions, 162–169

DNSProxyProvider class, 303
Dock, 19, 301
Documents directory

monitoring !le-open events in,
211–212

WindTail malware and, 227
domain name registrar, 310
Dummy malware, 102–103, 111, 117,

159, 169
DumpBTM project, 130–137

accessing metadata, 134–135
deserializing !les, 131–134

332!!!Index

DumpBTM project (continued)
!nding database path, 130–131
identifying malicious items,

135–136
KnockKnock tool and, 241
using DumpBTM in your own

code, 136–137
dyld cache, 86–87, 145
dyld-shared-cache-extractor tool, 87
dylib hijacking, 217, 249
dylib insertions, 246–248
dylib proxying, 249–252

E
Eleanor malware, 280
Electron framework, 249
ElectroRAT, 8
encrypted binaries, 70–71
endianness, 41, 43, 50–51
endpoints, DNSMonitor, 310
Endpoint Security, 179–203

authorization events, 213–222
clients, 185
detecting removal of quarantine

attribute, 316
entitlements, 254–256
events, 182–184

authorization events, 183,
213–222

event handling, 185–190
mute inversion, 209–212
muting, 206–212
printing out !le-open

Endpoint Security
event, 212

proof-of-concept !le
protector, 223–228

!le monitoring, 200–203
handler blocks, 185
header !les, 182–183
mute inversion, 209–212
muting events, 206–212
prerequisites, 191
process monitor, 190–200
proof-of-concept !le protector,

223–228
work"ow, 180–190

EndpointSecurity.h header !le, 182

entitlements
applying for, 254
BlockBlock tool and, 254–256
com.apple.developer.endpoint-security

.client, xxvii, 180
enabling in Xcode, 255–256
provisioning pro!les, 255
registering App ID, 254–255

entropy
encrypted binaries, 70
packed binaries, 67–70

enumerateProcesses project, 4.
See also processes

environment information, processes,
19–24

converting process information
into string object, 22–23

creating shared memory object, 20
declaring required variables, 20
extracting global data, 21
extracting size of response data, 22
resolving function pointer, 21
tracing process ID back to launch

item property list, 23–24
e_ppid member, process hierarchies,

14–15
error codes, code signing, 97
ESClient.h header !le, 182
ES_EVENT_TYPE_AUTH_DELETEEXTATTR

event, 219
ES_EVENT_TYPE_AUTH_* events, 201–202
ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM

_ADD event, 261–262
ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM

_REMOVE event, 261
ES_EVENT_TYPE_NOTIFY_CLOSE event, 202
ES_EVENT_TYPE_NOTIFY_CREATE event, 201
ES_EVENT_TYPE_NOTIFY_EXEC event,

184–186, 193–194,
197–198, 221

ES_EVENT_TYPE_NOTIFY_RENAME event, 202
ES_EVENT_TYPE_NOTIFY_UNLINK event, 202
es_invert_muting API, 210
eslogger utility, 183–184, 186
ESMessage.h header !le, 182, 185, 201
es_message_t structure, 185–186,

201, 216
es_muted_paths_events API, 210

Index!!!333

es_mute_process API, 208
es_mute_process_events API, 208
ESPlayground project, 180–182, 190,

205, 207, 211–213, 215,
223, 227

ESTypes.h header !le, 182, 206, 210, 215
EvilQuest malware, 79, 84–85, 93
executable packers, xxii, 62–67
execution architecture, processes,

32–34
execution state, processes, 32
ex!ltration of data, 157, 326
exit status, Endpoint Security process

monitor, 199
exploit detection, 315–317

F
false positives, code signing, 75, 96–97
fat binaries. See universal binaries
!le monitoring

Endpoint Security, 200–203
3CX supply chain attack, 320–322

!le protector, Endpoint Security,
223–228

allowing all !le accesses, 224–225
denying all !le accesses, 225
extracting process paths and

!lepaths, 225–226
granting !le access for platform

and notarized processes,
226–227

file utility, 40
!lter data providers, 159, 170–176

enabling, 170–171
querying the "ow, 173–174
running monitor, 174–176
writing extension for, 171–172

Finder, 19, 212, 301
Flashback malware, 246, 248
FruitFly malware, xxii, 142,

279–280, 314
fully quali!ed domain name

(FQDN), 164

G
Genieo malware, 11
getaddrinfo API, 110
GetProcessForPID API, 17–19

H
HackingTeam installer, 70–71
handler blocks, Endpoint Security, 185
header !les, Endpoint Security, 182–183
heuristic-based detection approach.

See also code signing;
Objective-See tools

code signing and, 76
CPU utilization, 35–36
detecting obfuscation, 62
downsides of, xxii
false positives, xxii, 75, 96–97
!le monitoring, 200
hidden directories and, 6–7
network monitoring, 174
protecting !les in user’s home

directory, 225
hierarchies, process, 13–19

Endpoint Security process
monitor, 193

parent, 14–17
retrieving information with

Application Services
APIs, 17–19

historical DNS records, 310
Hopper, 87, 145
host-based data collection, 102
How to Reverse Malware on macOS

Without Getting Infected
(Stokes), xxviii

I
Info.plist !le

browser extensions, 245–246
checking binary origins, 218
DNSMonitor, 299–300, 303
dynamic library insertion, 248
writing system extensions, 171

integrated development environment
(IDE), xxvi

Intel binaries, 32
Internet Protocol (IP) sockets, 107,

109–110
interprocess communication (IPC)

AF sockets, 105
DNSMonitor, 303–304
XPC, 265

334!!!Index

Invisible Internet Project (I2P), 8
IPStorm malware, 63, 66, 69, 142
iWebUpdate binary, 11, 158, 167–168

J
JSON

building JSON-i!ed string, 240
converting object properties to,

238–240
output from KnockKnock, 247

K
KeRanger malware, 7
KERN_PROCARGS2 value, 11–12
KeySteal malware, 86, 93
kill system API, 32
kinfo_proc structure, process

hierarchies, 14–15
KnockKnock tool, 233–252

Background Task Management,
241–242

browser extensions, 242–245
building list of loaded libraries

with, 249
command line options, 235
DazzleSpy and, 319
determining whether item is a

binary, 250
dylib hijacking, 249
dylib insertions, 246–248
dylib proxying, 249–252
enumerating dependencies of

running processes, 251
ItemBase class, 238
persistent item types, 238–240
plug-ins, 235–237, 240–252
positive detections/antivirus

engines, 240
system_profiler approach, 247
user interface, 234–235

kNStatSrcKeyRxBytes key, 117
kNStatSrcKeyTxBytes key, 117
kp_eproc structure, process hierarchies,

14–15
kSecCodeInfoCertificates key,

81–82
kSecCodeInfoFlags key, 82

L
LaunchAgents directories, 121–123
launchctl utility, 19–20
launch daemon, 121, 257–258.

See also persistence
Launch Services APIs, 243, 246
Lazarus APT group, 13–14
LC_SYMTAB load command, 60
leaf signature, 90
libproc APIs, 4
/Library/SystemExtensions/<UUID>/

library, 303
listeners, XPC, 265–266
load commands, Mach-O binaries, 53
loaded libraries

building list of with
KnockKnock, 249

enumerating, 24–28
LoggingSupport framework, 145–146,

148, 152, 289
log monitoring, 141–152

extracting log object properties,
148–151

remote logins, 142
resource consumption, 151–152
streaming log data, 146–148
TCC mechanism, 142–143
uni!ed logging system, 143–146
webcam access, 142

lsof tool, 30–31
LSSharedFileListCreate API, 120
LSSharedFileListInsertItemURL

API, 120
LuLu software, 78–79, 84, 170, 307,

319, 326

M
Macho* APIs, 47–50
Mach-O binaries

code signing and, 93–95
extracting dependencies, 54–59
extracting symbols, 59–62
load commands, 53
Mach-O headers, 50–52
slices, 40, 43, 47–50
universal binaries, 39–50

mach_timebase_info API, 216

Index!!!335

MacStealer malware, 209–210, 212, 225
malicious networking activity, 102–105
Malware Removal Tool (MRT), 76–77
management information base (MIB)

array, 11
metadata, accessing, 134–135
microphone, 282–285. See also audio

monitoring
Microsoft AutoRuns tool, 233
Mokes malware, 57–58, 142, 280, 314
MRT (Malware Removal Tool), 76–77
mute inversion, Endpoint Security,

209–212
audit tokens and, 210
default mute set and, 210
monitoring directory access,

211–212
muting events, Endpoint Security,

206–212

N
name error, DNS traf!c, 309
names, process, 8–9
NEDNSProxyManager object, 161–162
NEFilterFlow objects, 172–174
NEFilterManager object, 170–171
NEFilterSocketFlow objects, 174
NENetworkRule object, 172
netbottom command line tool, 112
Netiquette tool, 104
nettop utility, 112, 156
network access, DazzleSpy, 319
network-centric data collection, 102
network extension, DNSMonitor,

302–303
NetworkExtension framework, xxiii,

111–117, 159–160,
297–301

activation, 159–160
DNS monitoring, 157–169
!lter data providers, 169–175
indentifying responsible process,

168–169
methods, 163
prerequisties, 159, 298

network monitoring, 155–176
DNS monitoring, 157–169
!lter data providers, 169–175

snapshots, 156–157
3CX supply chain attack, 322–323

network sockets, 106–111
network state and statistics, 101–118.

See also NetworkStatistics
framework

capturing, 105–111
extracting network sockets,

106–107
host-based vs. network-centric

collection, 102
malicious networking activity,

102–105
retrieving process !le

descriptors, 106
socket details, 107–111

NetworkStatistics framework, 111–112
callback logic, 114–115
creating network statistic

managers, 113–114
kNStatSrcKeyRxBytes key, 117
kNStatSrcKeyTxBytes key, 117
linking to, 113
queries, 115

notarization
detecting, 77
disk images, 82–84
packages, 91–92

noti!cation events, 183–184, 200–203
device added, 286–287
device removed, 286–287

NSRunningApplication object, 8–9
NSTask API, 26
NStatManagerCreate API, 113
NStatManagerQueryAllSources

Descriptions API, 156–157
NSUserDefaults class, 292
NSXPCConnection class, 267
NSXPCListenerDelegate protocol,

265–266
NukeSped malware, 7
NX* APIs, 42–47
NXDOMAIN response, DNS traf!c, 309–310

O
Objective-C language, xxvi, 59

extracting log object properties,
148–151

336!!!Index

Objective-C language (continued)
performSelector: method, 134
private classes, 89

Objective-See tools, xxiv, 231–232
BlockBlock tool, 253–276
DNSMonitor, 297–311
KnockKnock tool, 233–252
LuLu software, 78–79, 84, 170, 307,

319, 326
Oversight tool, 280–295
TaskExplorer, 25

OceanLotus malware, 317
open !les, 28–31

lsof tool, 30–31
proc_pidinfo API, 29–30

oRAT malware, 33, 63, 104–105
os_log_create API, 303
OSLogEventProxy object properties,

150–151
OSSystemExtensionRequest class, 161
OSSystemExtensionRequestDelegate

protocol, 161
otool command

con!rming code accuracy, 45
detecting encrypted binaries, 70
enumerating network

connections, 112
!nding dependency paths, 56
Mach-O headers and, 52
reverse engineering log APIs, 145

OverSight tool, 280–295
Block option, 280
camera monitoring, 285–286
device connections and

disconnections, 286–288
disabling, 293–294
executing user actions, 292–293
extracting property values, 285
!ltering cmio and coremedia

messages, 290
LogMonitor class, 289–290
mic monitoring, 282–284
parsing messages to detect

responsible process, 291
predicate evaluation, 151–152
property listener, 281–286
responsible process identi!cation,

288–291

sample utility, 288
scripts and, 291–293
stopping, 293

P
PackageKit framework, 86–89
packages

accessing framework functions,
88–89

code signing and, 84–93
notarization status, 91–92
reverse engineering pkgutil utility,

86–88
validating, 90–91

packed binaries, 62–70
calculating entropy, 67–70
dependencies, 63
section and segment names, 63–67
symbols, 63

packers (executable packers), xxii,
62–67

Palomino Labs, 105
Parallels, xxviii
parent hierarchy, 14–17
ParentPSN key, 19
parsing binaries

extracting dependencies, 54–59
extracting symbols, 59–62
load commands, 53
Mach-O binaries, 50
packed binaries, 62–70
universal binaries, 39–50

paths, process, 6–8
of deleted binaries, 7–8
identifying hidden !les and

directories, 6–7
persistence, 119–137

Background Task Management,
123–136

BlockBlock, 258–264
DazzleSpy malware, 121–123,

317–319
DumpBTM project, 130–137
KnockKnock, 240–251
LSSharedFileListCreate API, 120
LSSharedFileListInsertItemURL

API, 120
ProgramArguments key, 122

Index!!!337

RunAtLoad key, 122–123
WindTail malware, 120–121

persistence enumerator.
See KnockKnock tool

persistence monitor. See BlockBlock
tool

persistent item types, KnockKnock
tool, 238–240

pkgutil utility, 78
package notarization, 91
reverse engineering, 86–89
verifying signature, 84–86

plug-ins
BlockBlock tool, 258–261
KnockKnock tool, 235–237

base scan method, 236
initializing by name, 237
methods of base class

plug-in, 236
properties of base class

plug-in, 236
updating global list of

persistent items, 237
positive detections/antivirus

engines, 240
processes, 3–38

arguments, 9–13
audit tokens, 5–6
code signing and, 24, 95–96
CPU utilization, 35–36
enumerating, 4–5
environment information, 19–24
execution architecture, 32–34
execution state, 32
loaded libraries, 24–28
open !les, 28–31
paths, 6–8
process hierarchies, 13–19
start time, 34–35
validating names, 8–9

process !le descriptors, retrieving, 106
ProcessInformationCopyDictionary API,

18–19
process monitor, Endpoint Security,

190–200
arguments, 197–199
audit tokens, 192
binary architecture, 194–195

code signing, 195–197
exit status, 199
extracting process

information, 192
extracting process objects,

191–192
hierarchies, 193
process paths, 192–193
script paths, 193–194
stopping the client, 199–200
subscribing to events, 191

process monitoring, 3CX supply chain
attack, 323–325

process serial numbers, 17–19
procinfo command line option, 19–20
proc_listallpids API, 4–5
proc_pid* APIs, 102, 105–107, 111
proc_pidinfo API, 29–30
PROC_PIDPATHINFO_MAXSIZE constant, 6
proc_pid_rusage API, 35
ProgramArguments key, 122
property listeners, 281–286

audio monitoring, 282–285
camera monitoring, 285–286

provisioning pro!les
BlockBlock tool, 255–256
DNSMonitor, 298–299
NetworkExtension framework, 160

psi structure, 108

Q
qtn_file_* APIs, 218

R
ransomware, 7, 120, 139, 200
redacted WHOIS data, 310
remote access tools (RATs)

CoinMiner, 8
ColdRoot, 28–29, 63
ElectroRAT, 8

remote connections, enabling, 271–272
remoteEndpoint instance variable,

173–174
remote logins, 142
remote methods, XPC, 275–276
request:actionForReplacingExtension:

withExtension: delegate
method, 161

338!!!Index

request:didFailWithError: delegate
method, 161

request:didFinishWithResult: delegate
method, 161

requestNeedsUserApproval: delegate
method, 161

resources, xxix
respondsToSelector: method, 89
response packets, DNS traf!c, 308
responsibility_get_pid_responsible

_for_pid API, 16–17
responsible process identi!cation, 16–19,

168–169, 174, 188–189,
193, 226, 288–291

reverse engineering
Activity Monitor utility, 30
log APIs, 145–146
pkgutil utility, 86–89

revocations, 77
rShell malware, 33
RunAtLoad key, 122–123

S
Safari browser extensions, 243–245

enumerating, 243
parsing output containing, 245
URLsForApplicationsToOpenURL:

method, 243
sample utility, 288
SCDynamicStoreCopyConsoleUser

API, 211
scripts, 193–194, 291–293
SecAssessmentCreate API, 83, 94
SecAssessmentTicketLookup API, 83,

91–92
SecCodeCopyGuestWithAttributes

API, 95
SecCodeCopyPath API, 96
SecCodeCopySigningInformation API, 81
SecRequirementCreateWithString

API, 82
SecStaticCodeCheckValidity API,

81–83, 93–94, 97
SecStaticCodeCreateWithPath API, 80
section and segment names, packed

binaries, 63–67
SecTranslocateIsTranslocatedURL API,

217–218

self-deleting malware, 325
serialization, 126–127
sfltool utility, 127–130
Shazam, 313–315
Shlayer malware, 9, 213, 242
SIGUSR1 signal, DNS traf!c, 305–306
SIP. See System Integrity Protection
slices, Mach-O binaries, 40, 43, 47–50
snapshots, xxviii, 101, 112, 115, 139,

155–157
soi_proto structure, sockets, 108
Spotlight service, 206–207, 246
startSystemExtensionMode method,

162–163
start time, processes, 34–35
swap_* APIs, 43–44
Swift language, xxvi
symbols, binary

extracting, 59–62
packed binaries, 63

sysctl API, 11, 15, 34
sysctlbyname API, 4
sysctlnametomib API, 34
system extensions. See also

NetworkStatistics
framework

activating, 160–161
entitlements, 298–300
identifying responsible processes,

168–169
prerequisites for, 160
writing, 162–169

System Integrity Protection
(SIP), 254

disabling, xxvii, 160, 181
entitlements and, xxvii
re-enabling in Recovery Mode,

xxviii
system monitoring. See Endpoint

Security; log monitoring;
network monitoring

System Preferences application,
123–124

system_profiler, 247

T
TAOMM repository, xxv
TaskExplorer tool, 25

Index!!!339

TCC (Transparency, Consent, and
Control) mechanism,
142–143, 223, 292

TCP protocol
querying for statistics about

network events, 115
sockets, 105, 108

3CX supply chain attack, 310, 319–326
BlockBlock tool, 324–325
code signing, 323–324
DNS monitoring and, 158–159
ex!ltration, 326
!le monitoring, 320–322
network monitoring, 322–323
process monitoring, 323–325
self-deletion, 325

translocation, 217–218
Transport Layer Security (TLS)

package, 105

U
UDP protocol

DNS traf!c, 163
querying for statistics about

network events, 115
sockets, 105, 108

universal binaries, 39–50
fat_arch structures, 41–47
FAT_CIGAM value, 41, 43–44
fat_header structure, 40–41, 43–47
inspecting, 40–42
Macho* APIs, 47–50
NX* APIs, 42–47
parsing, 42
swap_* APIs, 43–44

universal logging subsystem, 143–146
DNSMonitor, 303–304
manually interfacing with, 144–145
Oversight tool and, 288–289
reverse engineering log APIs,

145–146
URLsForApplicationsToOpenURL:

method, 243

V
verifyReturningError: method, 90
virtual machines

analyzing malware safely,
xxvii–xxviii

disabling SIM and AMFI, 160
VirusTotal, 168, 234, 239–240, 242, 319
vmmap tool, 24–26
VMware, xxviii

W
webcam access, 142.

See also Oversight tool
WindTail malware, 95, 120–121, 227, 242
Wireshark, 127, 135, 158
work"ow, Endpoint Security, 180–190

clients, 185
event handling, 185–190
events of interest, 182–184
handler blocks, 185

X
Xcode, xxvi, 255–256
XCSSET malware, 142, 223, 317
XPC, 265–275

authorizing clients, 269–271
client requirements, 270–271
delegates, 266
extracting audit tokens, 266–268
initiating connections, 274
listeners, 265–266
methods, 272–274
protocols, 271–273
remote connections, 271–272
remote methods, 275–276
verifying clients, 268–271

XProtect, 150, 183, 280

Y
Yort malware, 13–14

Z
zombie processes, 32
ZuRu malware, 24–28, 58–59, 63

The Art of Mac Malware, Volume 2, is set in New Baskerville, Futura, Dogma,
and TheSansMono Condensed.

NO STARCH PRESS

PHONE:
800.420.7240 #$
415.863.9900

EMAIL:
%&l(%@)#%t&$+,.+#-
WEB:
....)#%t&$+,.+#-

WINDOWS SECURITY INTERNALS
A Deep Dive into Windows Authentication,
Authorization, and Auditing
BY /&-(% 0#$%,&.
608 11., $59.99
2%3) 978-1-7185-0198-0

THE ANDROID MALWARE
HANDBOOK
Detection and Analysis by Human and
Machine
BY 42&) ,&) (t &l.
328 11., $49.99
2%3) 978-1-7185-0330-4

EVASIVE MALWARE
A Field Guide to Detecting, Analyzing,
and Defeating Advanced Threats
BY 56l(+7++2
488 11., $69.99
2%3) 978-1-7185-0326-7

PRACTICAL MALWARE ANALYSIS
The Hands-On Guide to Dissecting
Malicious Software
BY -2+,&(l %25#$%52 AND
&)8$(. ,#)29
800 11., $59.99
2%3) 978-1-59327-290-6

THE ART OF ARM ASSEMBLY,
VOLUME 1
64-Bit ARM Machine Organization
and Programming
BY $&)8&ll ,68(
1,064 11., $89.99
2%3) 978-1-7185-0282-6

THE ART OF MAC
MALWARE, VOLUME 1
The Guide to Analyzing
Malicious Software
BY 1&t$2+5 .&$8l(
328 11., $49.99
2%3) 978-1-7185-0194-2

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/art-mac-malware-v2 for errata and more information.

®

https://nostarch.com/art-mac-malware-v2/

Never before has the world relied so heavily on the Internet

to stay connected and informed. That makes the Electronic

Frontier Foundation’s mission—to ensure that technology

supports freedom, justice, and innovation for all people—

more urgent than ever.

For over 30 years, EFF has fought for tech users through

activism, in the courts, and by developing software to overcome

obstacles to your privacy, security, and free expression. This

dedication empowers all of us through darkness. With your help

we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

®

The Art of
Mac Malware

Detecting Malicious Software

Patrick Wardle

VOLUME 2“If you want to study these techniques,
you’d better learn from the best.”you’d better learn from the best.”

—Maria Markstedter, founder of Azeria Labs and
Forbes Person of the Year in Cybersecurity

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com
®

Wardle

The Art of Mac Malware
Detecting Malicious Software

®

As renowned Mac security expert Patrick
Wardle notes in The Art of Mac Malware,
Volume 2, the substantial and growing
number of Mac users, both personal and
enterprise, has created a compelling incentive
for malware authors to ever more frequently
target macOS systems. The only effective
way to counter these constantly evolving and
increasingly sophisticated threats is through
learning and applying robust heuristic-based
detection techniques.
To that end, Wardle draws upon decades
of experience to guide you through the
programmatic implementation of such
detection techniques. By exploring how to
leverage macOS’s security-centric frameworks
(both public and private), diving into key
elements of behavioral-based detection, and
highlighting relevant examples of real-life
malware, Wardle teaches and underscores the
efficacy of these powerful approaches.
Across 14 in-depth chapters, you’ll learn
how to:

 Capture critical snapshots of system state to
reveal the subtle signs of infection

 Enumerate and analyze running processes
to uncover evidence of malware

 Parse the macOS’s distribution and binary
file formats to detect malicious anomalies

 Utilize code signing as an effective tool to
identify malware and reduce false positives

 Write efficient code that harnesses the full
potential of Apple’s public and private APIs

 Leverage Apple’s Endpoint Security and
Network Extension frameworks to build
real-time monitoring tools

This comprehensive guide provides you with
the knowledge to develop tools and techniques,
and to neutralize threats before it’s too late.

About the Author
PATRICK WARDLE PATRICK WARDLE is the founder of
Objective-See, a nonprofit dedicated to
creating free, open source macOS security
tools and organizing the “Objective by the
Sea” Apple security conference. Wardle is
also the co-founder and CEO of DoubleYou,
a cybersecurity startup focused on empowering
the builders of Apple-focused security tools.
Having worked at both NASA and the National
Security Agency and having presented at
countless security conferences, he is intimately
familiar with aliens, spies, and talking nerdy.

VOL 2

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

