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WYS (WhatsYourSign) tool, 71–73

X
XAgent malware, 114
x/b command, LLDB debugger, 175
Xcode projects, 15–16
XCSSET malware, 15–16
x/i command, LLDB debugger, 175
x/s command, LLDB debugger, 175
XSLCmd malware, 53
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Yort malware, 91

Z
zero-day exploits, 18–19
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Defenders must fully understand how malicious 
software works if they hope to stay ahead of the 
increasingly sophisticated threats facing Apple 
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cryptocurrency miners as you uncover their 
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Mac malware specimen on your own.
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 Leverage dynamic analysis tools, such as 
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further insight into sophisticated threats

 Quickly identify and bypass anti-analysis 
techniques aimed at thwarting your 
analysis attempts

A current leader in the fi eld of macOS threat 
analysis, Patrick Wardle uses real-world 
examples pulled from his original research. The 
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to battling these increasingly prevalent and 
insidious Apple-focused threats. 
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