
I N D E X

A
Abbati, Arnaud, 117
ABI (application binary interface), 128
Activity Monitor tool, 64
adware

adware-related hijacks and
injections, 54–56

Bitdefender Adware Removal
Tool, 49

Crossrider, 43
5mLen, 70, 80–81
Pitchofcase, 40

aevt_decompile decompiler, 87
Amnesty International, 63
analysis. See dynamic analysis; static

analysis
analysis tool detection

detecting debugger, 209–210
preventing debugging, 210–211
targeting security tools, 208–209

analyzing EvilQuest malware
anti-analysis logic, 233–242
command line parameters, 231–233
con!rming !le type, 223–224
extracting contents, 224–225
extracting embedded

information, 229–231
!le encryption logic, 275–277
!le ex!ltration logic, 271–275
infection vector, 221–223
local viral infection logic, 253–263
persistence, 243–252
remote communications logic,

263–271
repersistence logic, 252–253
Suspicious Package utility, 225–228

analyzing scripts
AppleScript, 82–88
bash shell scripts, 76–78
Perl scripts, 88–89
Python scripts, 78–82

anti-analysis logic, 176–177
anti-dynamic-analysis approaches,

204–216
anti-static-analysis approaches,

188–204
environmentally generated keys,

216–217
EvilQuest malware, 233–242

debugging-thwarting logic,
234–238

obfuscated strings, 238–242
virtual machine-thwarting

logic, 233–234
overview, 187

anti-dynamic-analysis approaches
analysis tool detection, 208–211

detecting debugger, 209–210
preventing debugging, 210–211
targeting security tools,

208–209
bypassing, 211–216
execution environment,

modifying, 213
modifying instruction pointer,

214–215
modifying register value, 216
patching binary image, 213–214
virtual machine detection, 204–207

counting logical and physical
CPUs, 206

MAC address, checking, 207
overview, 204–205

284 Index

anti-dynamic-analysis
approaches (continued)
SIP status, 208
system model name, checking,

205–206
anti-infection protection mechanisms

application notarization
requirements, 4–5

File Quarantine, 4
Gatekeeper, 4

anti-static-analysis approaches
code-level obfuscations, 199–204

binary encryptors, 202–204
overview, 199–201
packers, 201–202

string-based obfuscation, 188–199
encrypted strings, 189–191
!nding deobfuscation code,

193–194
forcing malware to execute

decryption routine,
197–199

locating obfuscated strings,
191–192

sensitive strings disguised as
constants, 188–189

via Hopper script, 194–196
Apparency application, 91–92
append_ei function, EvilQuest malware,

257–259
Appify tool, 115, 116–117
Apple Disk Images (.dmg), 72
AppleJeus malware, 75–76, 135, 151–152
AppleScript, 82–88
Apple Silicon, 102, 126
application binary interface (ABI), 128
application bundles

Contents/_CodeSignature !le, 93
Contents/ directory, 93
Contents/Info.plist !le, 93–95
Contents/MacOS directory, 93
Contents/Resources directory, 93
de!ned, 91
WindTail malware, 91–95

applications
Apparency application, 91–92
application bundles, 91–95

application notarization
requirements, 4–5

cracked, 9–10
fake, 7–8
pirated, 9–10
trojanized, 8–9

Art of Computer Virus Research and
Defense, The (Szor), 253

assembly, 126–130
calling conventions, 127–128
de!ned, 126
instructions, 127
objc_msgSend function, 128–130
overview, 126
registers, 126–127

assembly (ASM) mode, Hopper, 146

B
backtrace command, LLDB debugger,

175
bash shell scripts, 76–78
binary analysis

extracting nonbinary components,
116–122

Mach-O binary !le format, 99–114
classifying, 107–114
data segments, 106–107
header, 100–103
load commands, 103–106
overview, 99–100

tools used to build binaries, 115–116
binary encryptors, 202–204
binary modi!cations, 42–43
BirdMiner malware, 10, 56, 155–156
BitcoinMagazine-Quidax _

InterviewQuestions_2018
document, 51

Bitdefender Adware Removal Tool, 49
breakpoint command, LLDB

debugger, 174
breakpoint delete command, LLDB

debugger, 174
breakpoint enable/disable command,

LLDB debugger, 174
breakpoint list command, LLDB

debugger, 174
breakpoint modify command, LLDB

debugger, 174

Index 285

breakpoints
adding commands to, 173–174
conditionally triggering, 172–173
de!ned, 170
managing, 174
overview, 170–171
setting on method names, 172

brute-forcing, 17
__bss section, Mach-O binary __DATA

segment, 106
Bundlore malware, 117

C
calling conventions, assembly, 127–128
capabilities

adware-related hijacks and
injections, 54–56

categorizing, 47–48
cryptocurrency miners, 56–57
de!ned, 1
!le encryption, 61–62
memory execution, 58–59
privilege escalation

root privileges, 52–54
sandboxes, 50–51

reconnaissance logic, 48–49
remote download/upload, 59–61
remote process, 58
remote shells, 57–58
spyware, 64–65
stealth, 62–64
surveys, 48–50

carve_target function, EvilQuest
malware, 276

C/C++ disassembly, 135–137
certi!cate !le ex!ltration, 272–275
CFG (control "ow graph) mode,

Hopper, 146
CFStringGetCString function, 137
Checkm8 exploit, 20
class-dump utility, 113–114
code-level obfuscations

binary encryptors, 202–204
de!ned, 188
overview, 199–201
packers, 201–202

code-signing authorities, 109
codesign utility, 108–111

Cohen, Frederick, 253
ColdRoot malware, 154
commands, adding to breakpoints,

173–174
construct_plist_path function,

EvilQuest malware, 251
__const section, Mach-O binary __TEXT

segment, 106
Contents/_CodeSignature !le, 93
Contents/ directory, 93
Contents/Info.plist !le, 93–95
Contents/MacOS directory, 93
Contents/Resources directory, 93
continue command, LLDB debugger, 169
control "ow disassembly, 137–139
control "ow graph (CFG) mode,

Hopper, 146
CookieMiner malware, 56, 157
CPUMeaner malware, 56, 73–74
cputype member, Mach-O header, 101
cracked applications, 9–10
CreativeUpdate malware, 16, 56, 109,

117–118
cron jobs, 32–33
cross-references, Hopper, 144–145
Crossrider adware, 43
cryptocurrency

cryptocurrency !le ex!ltration,
272–275

uncovering cryptocurrency mining
in App Store app, 180–185

cryptocurrency miners, 56–57
_cstring section, Mach-O binary __TEXT

segment, 106
CTRL-C command, LLDB debugger, 169
custom URL schemes, 10–13
Cylance antivirus !rm, 59

D
Dacls backdoor malware, 133–134,

159–160
DarthMiner malware, 56
__data section, Mach-O binary __DATA

segment, 106
__DATA segment, Mach-O binary !le

format, 104, 107
dataWithBytes:length: method,

Objective-C disassembly, 130

286 Index

debugging
LLDB debugger, 167–180

breakpoints, 170–174
controlling execution, 169–170
displaying runtime

information, 174–176
modifying process state,

176–178
overview, 167–168
scripts, 178–180
starting session, 168–169

overview, 165
power of, 166–167
uncovering cryptocurrency mining

in App Store app, 180–185
debugging-thwarting logic, 234–238
decompilation, 139–140
Decompiler tool, 80
Devadoss, Dinesh, 222, 275
DevilRobber malware, 84
directory listing ex!ltration, 271–272
disassembly

C/C++, 135–137
control "ow, 137–139
Objective-C, 130–133
Swift, 133–135

display modes, Hopper, 145–146
distribution packaging, extracting

malicious !les from
Apple Disk Images, 72
packages, 73–76

.dmg (Apple Disk Images) !le
extension, 72

.docm !le extension, 89–90
Dok malware, 5
DoubleFantasy malware, 194–196
Dummy malware, 57
dumping (printing), debugging

process, 166–167, 174
DYLD_* environment variables, 35–36
dylibs. See dynamic libraries
dynamic analysis

debugging, 165–185
LLDB debugger, 167–180
overview, 165
power of, 166–167
scripts, 178–180

uncovering cryptocurrency
mining in App Store
app, 180–185

de!ned, 67
!le monitoring, 153–156

FileMonitor utility, 155–156
fs_usage utility, 154–155
overview, 153–154

network monitoring, 157–163
Netiquette utility, 159–160
network status monitors,

158–159
network traf!c monitors,

160–163
overview, 157–158

overview, 149–150
process monitoring, 150–153

overview, 150–151
ProcessMonitor utility, 151–153

dynamic libraries (dylibs), 34–39
DYLD_* environment variables, 35–36
dylib hijacking, 37–39
dylib proxying, 36–37
overview, 34–35

E
EFI (Extensible Firmware Interface)

exploits, 20
ei_carver_main function, EvilQuest

malware, 275
ei_forensic_sendfile function,

EvilQuest malware, 274
ei_forensic_thread function, EvilQuest

malware, 271
ei_loader_main function, EvilQuest

malware, 254
ei_pers_thread function, EvilQuest

malware, 252
ei_rfind_cnc and ei_getip function,

EvilQuest malware, 281
ei_selfretain_main function, EvilQuest

malware, 249–250
ei_str function, EvilQuest malware,

239–240
8-bit registers, 127
eiht_get_update function, EvilQuest

malware, 262–263

Index 287

Eleanor malware, 150–151
Electron tool, 115–116, 120
embedded information, extracting,

229–231
Endpoint Security framework, 151
environmentally generated keys, 216–217
Equation Group, 217
ESET antivirus company, 10
Esser, Stefan, 54
event monitor rules, 41
EvilQuest malware, 43, 52, 62, 215

analyzing
anti-analysis logic, 233–242
command line parameters,

231–233
con!rming !le type, 223–224
extracting contents, 224–225
extracting embedded

information, 229–231
!le encryption logic, 275–277
!le ex!ltration logic, 271–275
infection vector, 221–223
local viral infection logic,

253–263
persistence, 243–252
remote communications

logic, 263–271
repersistence logic, 252–253
Suspicious Package utility,

225–228
invoking string decryption

routine, 197–199
updates, 277–281

ex!ltration, 59–61
certi!cate and cryptocurrency

ex!ltration, 272–275
directory listing ex!ltration, 271–272

exploits
Checkm8, 18–19
de!ned, 18
EFI, 18–19
zero-day, 18–19

Extensible Firmware Interface (EFI)
exploits, 20

externally facing services, 17–18

F
fake applications, 7–8
fake security alerts, 6–7
fake updates, 7
fat_header, Mach-O header, 102
52M_rj function, EvilQuest malware, 278
file command

identifying byte-compiled Python
script with, 70–71

identifying Of!ce documents, 89
!le encryption logic, 61–62, 275–277
!le ex!ltration logic, EvilQuest

malware analysis
certi!cate and cryptocurrency !le

ex!ltration, 272–275
directory listing ex!ltration, 271–272

!le monitoring
FileMonitor utility, 155–156
fs_usage utility, 154–155
overview, 153–154

FileMonitor utility, 155–156
File Quarantine, 4
filetype member, Mach-O header, 101
file utility, 228

EvilQuest malware, 223
Mach-O header, 103
WindTail malware, 71

FindCrypt plug-in, 194
FinFisher malware, 172
finish command, LLDB debugger, 169
FinSpy, 63
FireEye, 53
Flashback malware, 18
Flash zero-day, 19
FruitFly malware, 17, 64, 88–89, 151
fs_usage utility, 12, 154–155

G
garbage (spurious) instructions, 200
Gatekeeper, 4
get_mediator function, EvilQuest

malware, 263–265
get_targets function, EvilQuest

malware, 254, 272–274, 275
getDeviceSerial function, 135–136,

137, 139

288 Index

GMERA, 63
Grant, Ari, 172
GravityRAT malware, 118–121

H
HackingTeam cyberespionage

company, 19
Handbrake application, 16
handlers, AppleScript, 87
header, Mach-O binary !le format,

100–103
cputype member, 101
fat_header, 102
filetype member, 101
file utility and, 103
lipo tool and, 102–103
magic member, 100–101
offset member, 102
otool utility and, 101

hexadecimal mode, Hopper, 146
-h "ag, Mach-O header, 101
Homebrew package manager, 6
Hopper, 125, 139

cross-references, 144–145
Inspector view, 141–142
Proc view, 142
reverse engineering with, 140–146

creating binary to analyze,
140–141

display modes, 145–146
interface, 141–143
loading binary, 141
viewing disassembly, 143–145

string-based obfuscation via
Hopper script, 194–196

Str view, 142
hostname command, 89
--ignrp command line parameter,

EvilQuest malware, 233

I
infection vectors

anti-infection protection
mechanisms, 4–5

cracked applications, 9–10
custom URL schemes, 10–13
de!ned, 1
EvilQuest malware, 221–223

exploits, 18–20
externally facing services, 17–18
fake applications, 7–8
fake security alerts, 6–7
fake updates, 7
malicious emails, 5–6
Of!ce macros, 14–15
overview, 3–4
physical attacks, 19
pirated applications, 9–10
supply chain attacks, 16
trojanized applications, 8–9
Xcode projects, 15–16

Info.plist !le
de!ned, 11
WindTail malware, 93–95

Inspector view, Hopper, 141–142
Intego security company, 7
interactive shells, 57
IOServiceGetMatchingService

function, 136–137
IPStorm malware, 17–18
Iran Threats blog, 49
is_debugging function, EvilQuest

malware, 235–236
is_executable function, EvilQuest

malware, 255–257
iWorm malware, 10

J
jobs, 33

K
KeRanger ransomware, 61, 213–215
keychains, 49
kill _unwanted function, EvilQuest

malware, 244
KnockKnock open source utility, 44–45
Komplex malware, 58, 130, 138, 210

L
launch agents, 26–32
launch daemons, 26–32
Lazarus Group, 58, 61, 91, 133, 217

AppleJeus, 75–76, 135, 151–152
Dacls backdoor malware, 133–134,

159–160
JMTTrader.app, 8–9

Index 289

LC_LOAD_DYLIB load command, Mach-O
binary !le format, 105–106

LC_MAIN load command, Mach-O binary
!le format, 104–105

LC_SEGMENT_64 load command, Mach-O
binary !le format, 104

lfsc_dirlist function, EvilQuest
malware, 272

__LINKEDIT segment, Mach-O binary
!le format, 104

lipo tool, Mach-O header, 102–103
Little Snitch !rewall, 49, 209
LLDB debugger

breakpoints, 170–174
adding commands to, 173–174
conditionally triggering,

172–173
de!ned, 170
managing, 174
overview, 170–171
setting on method names, 172

controlling execution, 169–170
examining runtime information,

174–176
modifying process state, 176–178
overview, 167–168
starting session, 168–169

load commands, Mach-O binary !le
format

LC_LOAD_DYLIB, 105–106
LC_MAIN, 104–105
LC_SEGMENT_64, 104
overview, 103–104

local viral infection logic
checking which !les to infect,

255–257
EvilQuest malware analysis, 253–263
executing original code of infected

!le, 262–263
executing and repersisting from

infected !les, 260–262
infecting target !les, 257–260
listing candidate !les for

infection, 254
overview, 253–254

login items, 24–26
login/logout hooks, 34

LoudMiner malware, 10
lsof utility, 159

M
MacDownloader malware, 49, 60
Mach-O binary !le format, 76, 95

classifying, 107–114
code-signing information,

109–111
hashes, 107–109
Objective-C class

information, 113–114
strings, 112–113

header, 100–103
cputype member, 101
fat_header, 102
filetype member, 101
file utility and, 103
lipo tool and, 102–103
magic member, 100–101
offset member, 102
otool utility and, 101

load commands, 103–106
LC_LOAD_DYLIB, 105–106
LC_MAIN, 104–105
LC_SEGMENT_64, 104
overview, 103–104

overview, 99–100
segments, 106–107

__DATA segment, 107
__TEXT segment, 107
__LINKEDIT segment, 104

MachOView utility, 101
mach port, 136
macOS Catalina (10.15), 4–5
MacRansom, 205–206
macros

extracting, 89–90
macro-based attacks, 14–15

MacUpdate website, 56, 117
magic member, Mach-O header, 100–101
malicious emails, 5–6
Malwarebytes, 54
Mami malware, 166
MD5 hash, 107–108
memory execution, 58–59
memory write command, LLDB

debugger, 177–178

290 Index

MH_BUNDLE (0x8) value, Mach-O
header, 101

MH_DYLIB (0x6) value, Mach-O header,
101

MH_EXECUTE (0x2) value, Mach-O
header, 101

MinerGate, 118
mnemonics, assembly instructions, 127
Mokes malware, 64, 159
Mughthesec malware, 54, 207, 213

N
name mangling, 133, 135
Netcat utility, 150
Netiquette utility, 60, 159–160
netstat utility, 158
nettop utility, 158
NetWire malware, 191–192
network monitoring

Netiquette utility, 159–160
network status monitors, 158–159
network traf!c monitors, 160–163
overview, 157–158

nexti command, LLDB debugger, 169
nm utility, EvilQuest malware, 229
nonbinary analysis

analyzing scripts, 76–89
AppleScript, 82–88
bash shell scripts, 76–78
Perl scripts, 88–89
Python scripts, 78–82

applications, 91–95
extracting malicious !les from

distribution packaging, 72–76
Apple Disk Images, 72
packages, 73–76

identifying !le types, 70–72
Of!ce documents, 89–91
overview, 69–70

non-interactive shells, 57
nonoperations (NOPs), 200
NSData class method, Objective-C

disassembly, 131–132
NSData object, 131–132
NSTask launch method, 134
Nygard, Steve, 113

O
obfuscated scripts, 199–204
obfuscated strings

EvilQuest malware, 197–199,
238–242

locating, 191–192
__objc_* section, Mach-O binary __DATA

segment, 106
objc_msgSend function, 172, 178–179,

182–183, 193
assembly, 128–130
Swift disassembly, 133

Objective-C disassembly, 130–133
Of!ce macros

extracting, 89–90
macro-based attacks, 14–15

offset member, Mach-O header, 102
oletools toolset, 89–90
olevba utility, 89–90
operands, 127
organizationally unique identi!er

(OUI), 207, 213
osadecompile command, 82
OSAMiner malware, 56, 85–88
OS X Leopard, 4
OS X Mountain Lion, 4
otool utility, 101–102, 105
OUI (organizationally unique

identi!er), 207, 213

P
packages (.pkg), 73–76
packers, 201–202
patch binary

disassembling, 231
extracting embedded information

from, 229–231
periodic scripts, 33–34
Perl scripts, 88–89
persist_executable_frombundle function,

EvilQuest malware, 261
persist_executable function, EvilQuest

malware, 246
persistence

application and binary
modi!cations, 42–43

de!ned, 1, 23

Index 291

dynamic libraries, 34–39
DYLD_* environment variables,

35–36
dylib hijacking, 37–39
dylib proxying, 36–37
overview, 34–35

event monitor rules, 41
EvilQuest malware analysis, 243–252

copies as launch items, 247–249
copy operation, 246–247
killing unwanted processes,

244–246
overview, 243–244
starting launch items, 249–252

KnockKnock open source utility,
44–45

launch agents, 26–32
launch daemons, 26–32
login items, 24–26
login/logout hooks, 34
overview, 23–24
plug-ins, 39–40
relaunch applications, 41–42
scheduling mechanisms, 32–34

cron jobs, 32–33
at jobs, 33
periodic scripts, 33–34

scripts, 41
physical attacks, 19
Pirate Bay website, 10
pirated applications, 9–10
Pirrit malware, 102, 200–201, 208
Pitchofcase adware, 40
.pkg (packages), 73–76
pkgutil utility, EvilQuest malware, 225
Platypus tool, 76–77, 115, 117–118
plug-ins, 39–40
prevent_trace function, EvilQuest

malware, 237–238
print command, LLDB debugger, 175
printing (dumping), debugging

process, 166–167, 174
privilege escalation

root privileges, 52–54
sandboxes, 50–51

process monitoring
overview, 150–151
ProcessMonitor utility, 151–153

Proc view, Hopper, 142
Proton malware, 16, 49, 208–209
pseudocode mode, Hopper, 146
ptrace system call, preventing

debugging with, 210–211
PyInstaller Extractor tool, 119
PyInstaller tool, 115, 119
Python scripts, 78–82

R
ransomware. See also EvilQuest malware

de!ned, 23
KeRanger ransomware, 61, 213–215

RBP register, 127
RCX register, 131–132
RDX register, 131–132, 231
react_exec function, EvilQuest

malware, 266–267
react_host function, EvilQuest

malware, 270
react_keys function, EvilQuest

malware, 269
react_ping function, EvilQuest

malware, 270, 280
react_sav function, EvilQuest

malware, 268
react_scmd function, EvilQuest

malware, 270–271
react_start function, EvilQuest

malware, 268
react_updatesettings function,

EvilQuest malware, 281
Reaves, Jason, 277
reconnaissance logic, 48–49
Reed, Thomas, 43, 54, 207, 222
registers

assembly, 126–127
R8 register, 269
R9 register, 183
RAX register, 31, 126–128, 130–131,

136–137, 175–177, 190, 200,
211, 216, 236, 248, 239

RBP register, 127
RCX register, 131–132
RDX register, 131–132, 231
RSI register, 131–132, 129, 136–137,

179–180, 193
RSP register, 127

292 Index

registers (continued)
modifying register value, 216
“scratch,” 136

register write command, LLDB
debugger, 176–177

relaunch applications, 41–42
remote communications logic,

EvilQuest malware analysis
get_mediator function, 263–265
remote tasking logic, 265–271

remote download/upload, 59–61
remote process, 58
remote services, compromising, 17–18
remote shells, 57–58
remote tasking logic, EvilQuest

malware, 265–271
overview, 265–266
react_exec function, 266–267
react_host function, 270
react_keys function, 269
react_ping function, 270
react_sav function, 268
react_scmd function, 270–271
react_start function, 268

repersistence logic, EvilQuest malware
analysis, 252–253

reverse engineering
creating binary to analyze, 140–141
display modes, 145–146
interface, 141–143
loading binary, 141
viewing disassembly, 143–145

Riordan, James, 217
root privileges, 52–54
RSI register, 131–132, 129, 136–137,

179–180, 193
RSP register, 127
run_audio and run_image function,

EvilQuest malware, 281
run_daemon function, EvilQuest

malware, 250–251
run_target function, EvilQuest

malware, 262–263
run command, LLDB debugger, 169
run-only AppleScript !les, 84–87
runtime information, displaying, 174–176

S
s_is_high_time function, EvilQuest

malware, 275
Safe Finder, 54–55
sandboxes, 50–51
scheduling mechanisms

cron jobs, 32–33
at jobs, 33
periodic scripts, 33–34

Schneier, Bruce, 217
“scratch” registers, 136
Script Editor, 82, 84
scripts, 41

AppleScript, 82–88
bash shell, 76–78
Perl, 88–89
Python, 78–82

scutil command, 89
SDK !les, 100–101
segments, Mach-O binary !le format,

106–107
__DATA segment, 107
__TEXT segment, 107
__LINKEDIT segment, 104

set_important_files function,
EvilQuest malware, 252–253

setLaunchPath: method, Swift
disassembly, 133

SHA-1 hash, 107–108
Shlayer malware, 4–5, 116
Siggen malware, 76–80, 94–95
signing certi!cate, 109
--silent command line parameter,

EvilQuest malware, 231–232
SIP (System Integrity Protection)

status, 169, 208
16-bit registers, 127
64-bit registers, 127
spurious (garbage) instructions, 200
spyware, 64–65
stack, de!ned, 127
static analysis

assembly, 126–130
binary analysis, 99–122

extracting nonbinary
components, 116–122

Index 293

Mach-O binary !le format,
99–114

tools used to build binaries,
115–116

decompilation, 139–140
de!ned, 67
disassembly, 130–139
nonbinary analysis, 69–95

analyzing scripts, 76–89
applications, 91–95
extracting malicious !les

from distribution
packaging, 72–76

identifying !le types, 70–72
Of!ce documents, 89–91
overview, 69–70

reverse engineering with Hopper,
140–146

stealth, 62–64
stepi command, LLDB debugger, 169
stepping through, debugging process,

166
Stokes, Phil, 80, 85, 87, 277
string-based obfuscation

de!ned, 188
encrypted strings, 189–191
!nding deobfuscation code, 193–194
forcing malware to execute

decryption routine, 197–199
locating obfuscated strings, 191–192
sensitive strings disguised as

constants, 188–189
via Hopper script, 194–196

strings
extracting embedded strings,

112–113
obfuscated strings

EvilQuest malware, 197–199,
238–242

locating, 191–192
strings utility

EvilQuest malware, 229–230
WindTail malware, 112–113

Str view, Hopper, 142
sudoers !le, 54
supply chain attacks, 16
surveys, 48–50

Suspicious Package utility, 73–75,
225–228

Swift disassembly, 133–135
System Integrity Protection (SIP)

status, 169, 208
Szor, Peter, 253

T
tcpdump utility, 160
team identi!er, 109
__TEXT segment, Mach-O binary !le

format, 104, 106–107
ThiefQuest malware, 278. See also

EvilQuest malware
32-bit registers, 127
Thomas, Adam, 54
Tor utility, 150
Trend Micro, 15, 278–279, 281
trojanized applications, 8–9
typosquatting, 6

U
universal binaries, 102
UPX packer, 201, 213
user-assisted infections. See also

infection vectors
anti-infection protection

mechanisms, 4–5
malicious emails, 5–6

/usr/bin/osascript command,
AppleScript, 82

V
VBA (Visual Basic for Applications), 14
-v "ag, Mach-O header, 101
Vilaça, Pedro, 202
virtual machine detection

counting logical and physical
CPUs, 206

MAC address, checking, 207
overview, 204–205
SIP status, checking, 208
system model name, checking,

205–206
virtual machine-thwarting logic, 233–234
viruses

checking which !les to infect,
255–257

294 Index

viruses (continued)
de!ned, 253
infected !les

executing and repersisting
from, 260–262

executing original code of,
262–263

infecting target !les, 257–260
listing candidate !les for

infection, 254
VirusTotal antivirus scanning portal, 108
Visual Basic for Applications (VBA), 14
VMware, 207
VST Crack website, 10

W
Wacaw tool, 150
WhatsAppService.app, 76–77
WhatsYourSign (WYS) tool, 71–73
whoami command, 89
WindTail malware, 10–13, 59–61, 70,

91–95
Info.plist !le, 93–95

key/value pairs, 94
strings utility, 112–113

Wireshark application, 161–163
writeconfig.xpc service, 53
writeToFile:atomically: method,

Objective-C disassembly, 132
WYS (WhatsYourSign) tool, 71–73

X
XAgent malware, 114
x/b command, LLDB debugger, 175
Xcode projects, 15–16
XCSSET malware, 15–16
x/i command, LLDB debugger, 175
x/s command, LLDB debugger, 175
XSLCmd malware, 53

Y
Yort malware, 91

Z
zero-day exploits, 18–19
ZuRu malware, 106

NO STARCH PRESS

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
sales@nostarch.com
WEB:
www.nostarch.com

THE GHIDR A BOOK
The Definitive Guide
BY chris eagle And kara nance
608 pp., $59.95
isbn 978-1-71850-102-7

ETHICAL HACKING
A Hands-on Introduction to Breaking In
BY daniel g. graham
376 pp., $44.99
isbn 978-1-71850-187-4

MALWARE DATA SCIENCE
Attack Detection and Attribution
BY joshua saxe And hillary
sanders
272 pp., $49.95
isbn 978-1-59327-859-5

PR AC TICAL MALWARE ANALYSIS
The Hands-On Guide to Dissecting
Malicious Malware
BY michael sikorski And
andrew honig
800 pp., $59.95
isbn 978-1-59327-290-6

BL ACK HAT PY THON, 2ND EDITION
Python Programming for Hackers and
Pentesters
BY justin seitz And tim arnold
216 pp., $44.99
isbn 978-1-71850-112-6

THE ART OF CYBERWARFARE
An Investigator’s Guide to Espionage,
Ransomware, and Organized Cybercrime
BY jon dimaggio
241 pp., $39.99
isbn 978-1-71850-214-7

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/art-mac-malware/ for errata and more information.

Never before has the world relied so heavily on the Internet

to stay connected and informed. That makes the Electronic

Frontier Foundation’s mission—to ensure that technology

supports freedom, justice, and innovation for all people—

more urgent than ever.

For over 30 years, EFF has fought for tech users through

activism, in the courts, and by developing software to overcome

obstacles to your privacy, security, and free expression. This

dedication empowers all of us through darkness. With your help

we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

Never before has the world relied so heavily on the Internet

to stay connected and informed. That makes the Electronic

Frontier Foundation’s mission—to ensure that technology

supports freedom, justice, and innovation for all people—

more urgent than ever.

For over 30 years, EFF has fought for tech users through

activism, in the courts, and by developing software to overcome

obstacles to your privacy, security, and free expression. This

dedication empowers all of us through darkness. With your help

we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

Defenders must fully understand how malicious
software works if they hope to stay ahead of the
increasingly sophisticated threats facing Apple
products today. The Art of Mac Malware is a
comprehensive handbook for cracking open these
malicious programs and seeing what’s inside.
Discover the secrets of nation-state backdoors,
destructive ransomware, and subversive
cryptocurrency miners as you uncover their
infection methods, persistence strategies, and
insidious capabilities. Then work with and
extend foundational reverse-engineering
tools to extract and decrypt embedded strings,
unpack protected Mach-O malware, and even
reconstruct binary code. Next, using a debugger,
you’ll execute the malware, instruction by
instruction, to discover exactly how it operates.
In the book’s fi nal section, you’ll put these
lessons into practice by analyzing a complex
Mac malware specimen on your own.
You’ll learn to:

 Recognize common infection vectors,
persistence mechanisms, and payloads
leveraged by Mac malware

 Triage unknown samples in order to quickly
classify them as benign or malicious

 Work with static analysis tools, including
disassemblers, in order to study malicious
scripts and compiled binaries

 Leverage dynamic analysis tools, such as
monitoring tools and debuggers, to gain
further insight into sophisticated threats

 Quickly identify and bypass anti-analysis
techniques aimed at thwarting your
analysis attempts

A current leader in the fi eld of macOS threat
analysis, Patrick Wardle uses real-world
examples pulled from his original research. The
Art of Mac Malware is the defi nitive resource
to battling these increasingly prevalent and
insidious Apple-focused threats.

About the Author
PATRICK WARDLE is the founder of Objective-
See, a nonprofi t that creates open source macOS
security tools. He spends his time fi nding Apple
zero-days, analyzing macOS malware, speaking
at global security conferences, and writing
tools to protect Mac users around the world. He
has also worked at NASA and the NSA, making
him intimately familiar with aliens, spies, and
talking nerdy.

“An invaluable resource for anyone looking
to level up their skills.”to level up their skills.”

—Maria Markstedter (@Fox0x01), founder of Azeria Labs
and Forbes Person of the Year in Cybersecurity

$49.99 ($65.99 CDN)

Wardle

disassemblers, in order to study malicious

 Quickly identify and bypass anti-analysis

The

The Art of Mac Malware
The Guide to Analyzing Malicious Software

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

