
The Art of Mac Malware: Analysis

p. wardle

Chapter 0x7: Disassembling & Decompilation

📝 Note:

This book is a work in progress.

You are encouraged to directly comment on these pages ...suggesting edits, corrections,
and/or additional content!

To comment, simply highlight any content, then click the icon which appears (to the
right on the document’s border).

1

The Art of Mac Malware: Analysis

p. wardle

Mach-O binaries, by definition, are “binary” ...meaning that while readily readable by

computers, their compiled binary code is not designed to be directly readable by humans.

As the vast majority of Mach-O malware is solely “available” in this compiled binary form

(i.e. its source code is not available), we as malware analysts rely on tools that are

able to extract meaningful information from such binaries.

In the previous chapter we covered various static analysis tools that can aid in the

triage of unknown Mach-O binaries. However, if we truly want to comprehensively

understand a Mach-O binary (for example a specimen that appears to be a new piece of Mac

malware), other more sophisticated tools are required.

Advanced reverse-engineering tools offer the ability to disassemble, decompile (and even

dynamically debug) binaries. In this chapter, we’ll stick to the static analysis

approaches of disassembling and decompilation (though in later chapters we’ll cover

dynamic debugging as well). While these tools require at least an elementary

understanding of low-level reversing concepts (such as assembly code), and may lead to

time-consuming analysis sessions, their analysis abilities are invaluable and unmatched.

Even the most sophisticated malware specimen is no match for a skilled analyst wielding

these tools!

Before discussing the specifics of disassemblers and decompilers, a brief foray into

assembly code is required.

Assembly Language Basics

📝 Note:

Entire books have been written on the topics of disassembling binary code and the
assembly language.

Here, we provide only the basics (and take some liberties in simplifying various
concepts), and assume the reader is familiar with various basic reversing concepts
(such as registers, etc.).

Two excellent books on the topic of reverse-engineering (including
assembly/disassembly) are:

■ “Hacker Disassembling Uncovered” [1]

■ “Reversing: Secrets of Reverse Engineering” [2]

2

https://www.amazon.com/Hacker-Disassembling-Uncovered-Kris-Kaspersky/dp/1931769648
https://www.amazon.com/Reversing-Secrets-Engineering-Eldad-Eilam/dp/0764574817

The Art of Mac Malware: Analysis

p. wardle

Software (including malware) is written in a programming language ...an unambiguous

“human friendly”-ish language that may then be translated (compiled) into binary code.

Scripts that we discussed in Chapter 0x5 (“Non-Binary Analysis”), are not compiled per

se, but rather “interpreted” at runtime into commands or code that the system

understands.

As noted, when analyzing a compiled Mach-O binary suspected of being malicious, the

original source code is generally not available. We must leverage a tool that can

understand the compiled binary machine-level code, and translate it back into something

more readable: assembly code! This process is known as disassembling.

Assembly is a low-level programming language that is translated directly to binary
instructions. This direct translation means that binary code within a compiled binary can
(later) be directly compiled back into assembly. For example, the binary sequence:
1001000100000111100000000111000 can be represented in assembly code as: add rax, 0x38 (
“add 38 hex to the rax register”).

At its core, a disassembler takes as input a compiled binary (such as a malware sample)
and performs this translation back into assembly code. Of course, it’s up to us to make
sense of the provided assembly!

📝 Note:

There are various “versions” of assembly. We’ll focus on x86_64 (the 64-bit version of
the x86 instruction set), the System V ABI (calling convention) with Intel syntax.

...as this is the (current) instruction set and calling convention of macOS!

Assembly instructions are “represented by a mnemonic which [is], often combined with one
or more operands” [3]. Mnemonics generally describe the instruction:

Mnemonic Example Description

add add rax, 0x100 Adds the second operand (e.g. 0x100) to the first.

mov mov rax, 0x100 Moves the second operand (e.g. 0x100) into the first.

jmp jmp 0x100000100 Jump to (i.e. continue execution at) the address in the
operand.

call call rax Execute the subroutine specified at the address in the
operand.

Generally, operands are either registers (a named memory ‘slot’ on the CPU) or numeric
values. Some of the registers you’ll encounter while reversing a 64-bit Mach-O binary

3

The Art of Mac Malware: Analysis

p. wardle

include, rax, rbx, rcx, rdx, rdi, rsi, rbp, rsp, and r8 - r15. As we’ll see shortly,
oftentimes specific registers are consistently used for specific purposes, which
simplifies reverse-engineering efforts.

📝 Note:

All 64-bit registers can also be “referenced” by their 32-bit (or smaller) components
...which you’ll (still) come across during binary analysis.

“All registers can be accessed in 16-bit and 32-bit modes. In 16-bit mode, the register
is identified by its two-letter abbreviation from the list above. In 32-bit mode, this
two-letter abbreviation is prefixed with an 'E' (extended). For example, 'EAX' is the
accumulator register as a 32-bit value.

Similarly, in the 64-bit version, the 'E' is replaced with an 'R' (register), so the
64-bit version of 'EAX' is called 'RAX'.” [3]

Before we wrap up our (cursory) discussion of assembly code, let’s briefly discuss
calling conventions. This will give us an understanding of how API (method) calls are
made, how arguments are passed in, and how the response is handled ...in assembly code.

Why is this relevant? Well, one can often gain a fairly comprehensive understanding of a
Mach-O binary by simply studying the system API methods it invokes. For example, a
malicious binary that makes a call to a “write file” API method, passing in both a
property list and path that falls within the ~/Library/LaunchAgents directory, is likely
persisting as a launch agent!

Thus, we often don’t need to spend hours understanding all assembly instructions in a
binary, but instead can focus on the instructions “around” API calls to understand:

■ What (API) calls are invoked
■ What arguments are passed in to the (API) call
■ What actions it takes based on the result of the (API) call

...often this understanding is sufficient to gain a relatively comprehensive
understanding of the (potentially malicious) binary specimen we’re analyzing.

To facilitate the explanation of calling conventions and method calls (at the assembly
level), we’ll focus on a snippet Objective-C, which creates a NSURL object that is
initialized with "www.google.com":

01

02

 //url object
 NSURL* url = [NSURL URLWithString:@"www.google.com"];

When a program wants to invoke a method or a system API call, it first needs to “prepare”

4

The Art of Mac Malware: Analysis

p. wardle

the arguments for the call. In the source code above, when invoking the URLWithString:
method (which expects a string object as its only argument), the Objective-C code passes
in the string "www.google.com".

At the assembly level, there are specific “rules” about how to pass arguments to a method
or API function. This is referred to as the calling convention. The rules of the calling
convention are articulated in an Application Binary Interface (ABI), and for 64bit macOS
system are as follows:

Argument Register

1st argument rdi

2nd argument rsi

3rd argument rdx

4th argument rcx

5th argument r8

6th argument r9

macOS (intel 64bit) calling convention

As these rules are consistently applied it allows us as malware analysts to understand
exactly how a call is being made. For example, for a method that takes a single
parameter, the value of this parameter (the argument) will always be stored in the rdi
register prior to the call!

Thus, once a call is identified in the disassembly (by the call mnemonic), looking
backwards in the assembly code will reveal the values of the arguments passed to the
method or API. This can often provide valuable insight into the code’s logic (i.e. what
URL a malware sample is attempting to connect to, the path of a file it’s opening, etc.).

And what about when the call instruction returns? Consulting the ABI reveals that the
return value of the method or API call will always be stored in the rax register. Thus
once the NSURL’s URLWithString: method call returns, the newly constructed NSURL object
will be in the rax register.

As the rax register holds the return value when the call instruction completes, you’ll
often see disassembly with a call instruction, immediately followed by instructions
checking and taking an action based on the result of the value in the rax register. For
example (as we’ll see shortly) a malicious sample choosing not to infect a system if a
function that checks for network connectivity returns zero (NO/false) in the rax
register.

Something else that is imperative to understand when reversing Objective-C binary code is

5

The Art of Mac Malware: Analysis

p. wardle

the objc_msgSend [4] function.

Recall the following Objective-C code that simply constructs a URL object:

01

02

 //url object
 NSURL* url = [NSURL URLWithString:@"www.google.com"];

When this code is compiled, the compiler (llvm) will translate this Objective-C call (and
most other Objective-C calls), into code that invokes the objc_msgSend. Or as Apple
explains:

“When it encounters a [Objective-C] method call, the compiler generates a call to
...objc_msgSend” [4]

Apple developer documentation contains an entry for this function, stating that it “sends
a message with a simple return value to an instance of a class” [4]:

The objc_msgSend function

As the vast majority of Objective-C calls are routed through this function, it is

imperative to understand it when reversing compiled Objective-C code. So, let’s break it

down!

6

The Art of Mac Malware: Analysis

p. wardle

First, what does “sends a message ...to an instance of a class” even mean? Simply put,
this means invoking (calling) an object’s method.

📝 Note:

The Objective-C runtime is based on the notion of sending messages, and other rather
unique object originated paradigms.

For an in-depth discussion of the Objective-C runtime and its internals, consult the
following by nemo:

■ “Modern Objective-C Exploitation Techniques” [5]

■ “The Objective-C Runtime: Understanding and Abusing” [6]

And second, what about objc_msgSend’s parameters:

■ The first parameter (self) is “a pointer that points to the instance of the class
that is to receive the message” [4]. Or more simply put, it’s the object that the
method is being invoked upon. If the method is a class method, this will be an

instance of the class object (as a whole), whereas for an instance method, self
will point to an instantiated instance of the class as an object.

■ The second parameter, (op), is “the selector of the method that handles the
message” [4]. Again, more simply put, this is just the name of the method.

■ The remaining parameters are any values that are required by the method (op).

Finally, objc_msgSend returns whatever the method (op) returns.

Recall that the ABI defines how arguments are passed to a function call. As such, we can

map exactly which registers will hold objc_msgSend’s arguments at time of invocation:

Argument Register (for) objc_msgSend

1st argument rdi self: object that the method is being invoked upon

2nd argument rsi op: name of the method

3rd argument rdx 1st argument to the method

4th argument rcx 2nd argument to the method

7

http://www.phrack.org/issues/69/9.html
http://www.phrack.org/issues/66/4.html

The Art of Mac Malware: Analysis

p. wardle

5th argument r8 3rd argument to the method

6th argument r9 4th argument to the method

7th+ argument rsp+
(on the stack)

5th+ argument to the method

Of course the registers rdx, rcx, r8, r9, are only used if the method being invoked
requires them (for arguments). For example, a method that only takes one argument will

only utilize the rdx register.

Also, like any other function or method call, once the call to objc_msgSend completes,
the rax register will hold the return value (which is actually the return value from the
method that was invoked).

This wraps up our very brief discussion on assembly language basics. Armed with

foundation understanding of this low-level language, let’s now look at disassembling

binary code.

Disassembling

Disassembling involves converting binary code (1s and 0s) back into assembly
instructions. This assembly code can then be analyzed to gain a comprehensive
understanding of the binary. A disassembler (discussed shortly) is a program that is able
to perform this translation and facilitate the analysis of compiled binaries.

Here, we’ll discuss various disassembling concepts, illustrated via real world examples
(taken directly from malicious code). It is important to remember that generally
speaking, the goal of analyzing a malicious code is to gain a comprehensive understanding
of its logic and capabilities ...not necessarily to understand each and every assembly
instruction. As we noted earlier, focusing on the logic around method and function calls
can often provide an efficient means to gain such an understanding.

As such, let’s briefly look at an example of disassembled code in order to illustrate how
to identify such calls, the parameters, and the (API) response. The end result? A
comprehensive understanding of the disassembled code snippet.

Malware sometimes contains logic to check if its host is connected to the internet. If
the infected system is offline, the malware will often wait (sleep) before trying to
connect to its command and control server for tasking.

A specific example of malware that checks for network connectivity is OSX.Komplex [7],
which contains a function named connectedToInternet. By studying the disassembled binary
code of this nation-state backdoor, we can confirm this function indeed checks if the
infected system is online as well as understand how it accomplishes this check.

8

The Art of Mac Malware: Analysis

p. wardle

Specifically our analysis will reveal the malware checks for network connectivity via
Apple’s NSData class, invoking the dataWithContentsOfURL: method [8]. If a remote URL
(www.google.com) is not reachable (i.e. the infected system is offline), the call will
fail, indicating the system is offline.

Now let’s dive into the disassembly of OSX.Komplex’s connectedToInternet function
(annotated for clarity). Note that we’ll break down the function piece by piece and first

show an Objective-C representation, reconstructed from the disassembly.

01

02

03

04

connectedToInternet() {

 //url object
 NSURL* url = [NSURL URLWithString:@"www.google.com"];

Previously we mentioned that Objective-C methods calls are “translated” into calls to the

the objc_msgSend function. Thus, it’s unsurprising to see a call to this function in the
disassembly:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

 connectedToInternet

 ;move a pointer to the NSURL class into rdi

 ; the rdi register holds the first parameter (‘self’)

 mov rdi, qword [objc_cls_ref_NSURL]

 ;move a pointer to the method name ‘URLWithString:’ into rsi

 ; the rsi register holds the 2nd parameter (‘op’)

 lea rsi, qword [URLWithString:]

 ;load the address of the url in rdx

 ; the rdx register holds the 3rd parameter, which is the 1st parameter passed to

 ; the method being invoked (URLWithString:)

 lea rdx, qword [_www_google_com]

 ;move a pointer to objc_msgSend into the rax register

 ; and then invoke it

 mov rax, cs:_objc_msgSend_ptr

 call rax

 ;save the response into a (stack) variable named ‘url’

 ; the rax register holds the result of the method call

 mov qword [rbp+url], rax

9

The Art of Mac Malware: Analysis

p. wardle

We also see that the single line of Objective-C code, (NSURL* url = [NSURL
URLWithString:@"www.google.com"],) was translated into several lines of assembly code.

First the parameters are initialized (in the expected registers) for a call to

objc_msgSend, the call is then made, and the result is saved.

Specifically, the rdi register (the first parameter) is loaded with a reference to the
NSURL class. Then, the second parameter (rsi) is loaded with the name of the method:
URLWithString:. Finally rdx is initialized with the string “www.google.com”. Now the
objc_msgSend can be made. Once the call completes, the newly initialized NSURL object is
returned in the rax register and stored into a local variable.

Once a NSURL object has been constructed the malware invokes the NSData’s
dataWithContentsOfURL: method. Again, before looking at the disassembly, let’s construct
a likely representation in Objective-C:

01

02

03

 //data object
 // initialized by trying to connect/read to google.com

 NSData* data = [NSData dataWithContentsOfURL:url];

Here’s the (relevant) disassembly code of OSX.Komplex’s connectedToInternet method:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

 ;the following code prepares the relevant registers

 ; then makes an objective-c call via the objc_msgSend function

 ;move a pointer to the NSData class into rdi

 ; the rdi register holds the first parameter (‘self’)

 mov rdi, qword [objc_cls_ref_NSData]

 ;move a pointer to the method name ‘dataWithContentsOfURL:’ into rsi

 ; the rsi register holds the 2nd parameter (‘op’)

 lea rsi, qword [dataWithContentsOfURL:]

 ;mov the (previously created) url object into rdx

 ; the rdx register holds the 3rd parameter, which is the 1st parameter passed to

 ; the method being invoked (‘dataWithContentsOfURL:’)

 mov rdx, qword [rbp+url]

 ;move a pointer to objc_msgSend into the rax register

 ; and then invoke this function, to make the objective-c call

 mov rax, cs:_objc_msgSend_ptr

10

The Art of Mac Malware: Analysis

p. wardle

20

21

22

23

24

 call rax

 ;save the response into a (stack) variable named data

 ; the rax register holds the result of the method call

 mov qword [rbp+data], rax

Similar to the disassembly for the call into NSURL’s URLWithString: method, here we see
the parameters being initialized (in the expected registers) for a call to objc_msgSend,
the call is then made, and the result is saved (into a variable named data).

OSX.Komplex’s connectedToInternet function completes by returning an integer value
(0x0/0x01) to the caller, based on the result of NSData’s dataWithContentsOfURL: method.
Specifically, a 0x1 (‘true’) is returned if the method succeeded to indicate the malware

was able to connect to the internet and reach google.com. If the dataWithContentsOfURL
method failed (meaning it returned a blank (nil) data object), the connectedToInternet
function returns 0x0 (‘false’) to indicate to the caller that the network is unreachable.

The malware authors likely wrote something similar to the following Objective-C code to
implement this return-value logic:

01

02

03

04

 //set flag
 // YES (true) if google was reachable

 isConnected = (data != nil) ? YES : NO;

 return (int)isConnected;

And how does this look like in (disassembled) assembly code? Glad you asked:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

 ;compare the the data variable with zero (nil)

 cmp qword [rbp+data], 0x0

 ;if data was zero,

 ; jump to the ‘notConnected’ label

 je notConnected

 ;set ‘isConnected’ to 0x1

 mov byte [rbp+isConnected], 0x1

 ;skip over the ‘notConnected’ logic

 jmp leave

notConnected:

11

The Art of Mac Malware: Analysis

p. wardle

15

16

17

18

19

20

21

22

23

24

25

26

27

 ;set ‘isConnected’ to 0x0
 mov byte [rbp+isConnected], 0x0

leave:

 ;move the value into rax
 ; note: al is the lower byte of rax

 mov al, byte [rbp+isConnected]

 and al, 0x1

 movzx eax, al

 return

First the cmp instruction is used to compare the value of the data variable (returned
from the call to dataWithContentsOfURL). If it’s 0 (nil), the assembly code jumps to the
notConnected label and sets the value of the isConnected variable to 0. Otherwise, if the
dataWithContentsOfURL method returned a non-nil value, the isConnected variable is set to
one.

Finally, the isConnected variable is moved into the rax (eax) register by means of a few
instructions. Such instructions are required to ensure the boolean value is correctly

converted into a (larger) integer value to be returned to the caller.

As is often the case, a few lines of Objective-C code are often expanded into many

assembly instructions, which makes analyzing disassembled code rather time consuming.

However without access to source code, often we have little other choice. And, the

assembly instructions do provide unparalleled insight into the malware’s inner workings

...so much so that often we can completely reconstruct the malware’s code in a

higher-level language. Here for example a complete reconstruction of the

connectedToInternet function:

01

02

03

04

05

06

07

08

09

int connectedToInternet()

{

 //result
 BOOL isConnected = NO;

 //url object
 // let’s use google.com
 NSURL* url = [NSURL URLWithString:@"www.google.com"];

12

The Art of Mac Malware: Analysis

p. wardle

10

11

12

13

14

15

16

17

18

19

 //data object
 // init’d by trying to connect/read to google.com

 NSData* data = [NSData dataWithContentsOfURL:url];

 //set flag

 // YES (true) if google was reachable!

 isConnected = (data != nil) ? YES : NO;

 return (int)isConnected;

}

reconstruction of a connectivity check

(OSX.Komplex)

Now, let’s walk through the (annotated) disassembly of malware’s code that both invokes

the connectedToInternet function, and then acts upon its response.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

isConnected:

;call the function

call connectedToInternet()

;check a 0x0 or 0x1 was returned

and al, 0x1

mov byte [rbp+isConnected], al

test byte [rbp+isConnected], 0x1

;take this if 0x0 (not connected)

jz notConnected

;take this if 0x1 (connected)

jmp continue

;sleep

notConnected:

mov edi, 0x3c

call sleep

;check connection (again)

jmp isConnected

13

The Art of Mac Malware: Analysis

p. wardle

25

26

continue:

...

invoking connectedToInternet, and processing the result
(OSX.Komplex)

First the code invokes the connectedToInternet function. As this function takes no
parameters, no register setup is required. Following the call the malware checks if the

return value is 0x0 (NO/false). This is accomplished via a test and a jz (jump zero)
instruction. The test instruction “performs a bitwise AND on two operands” [9] and sets
the zero flag based on the result. Thus if the connectedToInternet function returns a
zero, the jz instruction will be taken, jumping to the notConnected label. Here, the code
invokes the sleep function ...before jumping back to the isConnected label, to check for
connectivity once again. In other words, the malware will wait until the system is

connected to the internet, before continuing on.

With this comprehensive understanding, we can (re)construct this logic in the following

Objective-C code:

01

02

03

while(0x0 == connectedToInternet()) {

 sleep(0x3c);

}

...in Objective-C

Of course not all Mac binaries (including malware) are written in Objective-C. Let’s look

at another (abridged and annotated) snippet of disassembly - this time from a Lazarus

Group first-stage implant loader (originally written in C++) [10]. Specifically, we’ll

walk through a snippet of assembly code from a function named getDeviceSerial:

01

02

03

04

05

06

07

08

09

10

11

12

;function: getDeviceSerial(char*)

; first arg (rdi): output buffer ...for device serial #

; return (rax): status (success/error)

 ;move pointer to output buffer into r14

 mov r14, rdi

 ;move kIOMasterPortDefault into r15 register

 mov rax, qword [_kIOMasterPortDefault]

 mov r15d, dword [rax]

14

The Art of Mac Malware: Analysis

p. wardle

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 ;invoke IOServiceMatching

 ;1st arg (rdi): the string "IOPlatformExpertDevice"

 lea rdi, qword [IOPlatformExpertDevice]

 call IOServiceMatching

 ;invoke IOServiceGetMatchingService

 ; 1st arg (rdi): kIOMasterPortDefault

 ; 2nd arg (rsi): result of the call to IOServiceMatching

 mov edi, r15d

 mov rsi, rax

 call IOServiceGetMatchingService

 ;invoke IORegistryEntryCreateCFProperty

 ; 1st arg (rdi): result of the call to IOServiceGetMatchingService

 ; 2nd arg (rsi): the string "IOPlatformSerialNumber"

 ; 3rd arg (rdx): the (default) allocator kCFAllocatorDefault

 ; 4th arg (rcx): the options

 mov r15d, eax

 mov rax, qword [_kCFAllocatorDefault]

 mov rdx, qword [rax]

 lea rsi, qword [IOPlatformSerialNumber]

 xor ecx, ecx

 mov edi, r15d

 call IORegistryEntryCreateCFProperty

 ;invoke CFStringGetCString

 ; 1st arg (rdi): result of the call to IORegistryEntryCreateCFProperty

 ; 2nd arg (rsi): the output buffer

 ; 3rd arg (rdx): the buffer size

 ; 4th arg (rcx): the encoding

 mov edx, 0x20

 mov ecx, 0x8000100

 mov rdi, rax

 mov rsi, r14

 call CFStringGetCString

 return

...definitely a more sizable chunk of assembly code! But not to worry, we’ll walk through

it in detail.

15

The Art of Mac Malware: Analysis

p. wardle

First, observe that the disassembler has extracted function declaration, which (luckily

for us) includes its original name as well as the number and format of its parameters.

From the name, getDeviceSerial, let’s assume (though we’ll also validate) that this
function will retrieve the serial number of the infected system. Since the function takes

as its only parameter, a pointer to a string buffer (char*), it seems reasonable to
assume the function will store the extracted serial number in this buffer (so that it is

available to the caller).

Starting at line #06, we see the function first moves this argument (recall rdi always
holds the 1st argument), the address of the output buffer, into the r14 register. Why? As
noted, the rdi register is initialized with the first argument for any function call. If
the getDeviceSerial function makes any other calls (which it does), the rdi register will
have to be reinitialized (for those other calls). Thus, the function must ‘save’ the

address of the output buffer into another (non-used) register, so that this address may

be used later ...for example, at the end of the function when it’s populated with the

extracted serial number.

The function then (lines #09 - 10) moves a pointer to kIOMasterPortDefault into rax, and
dereferences it into the r15 register. According to Apple developer documentation, the
kIOMasterPortDefault is “The default mach port used to initiate communication with
IOKit.” [11] Seems likely the malware will be communicating with IOKit as the means to
extract the infected device’s serial number.

In lines 14 and 15, the function getDeviceSerial makes its first call into an Apple API:
the IOServiceMatching function. Apple notes this function creates “a matching dictionary
that specifies an IOService class match” taking in a single parameter, and returning the
matching dictionary [12]:

16

https://developer.apple.com/documentation/iokit/1514687-ioservicematching?language=objc

The Art of Mac Malware: Analysis

p. wardle

the IOServiceMatching function

We know that when making a call to a function or method, the rdi register holds the first

argument. In line #14, we see the assembly code initialize this register with the value

of “IOPlatformExpertDevice”. In other words, it’s invoking the IOServiceMatching function
with the string “IOPlatformExpertDevice”.

Once the matching dictionary has been created, the code invokes the

IOServiceGetMatchingService function (line # 22). Apple documents state that this
function will “look up a registered IOService object that matches a matching dictionary.”
[14]. For parameters, it expects a master port and a matching dictionary:

17

https://developer.apple.com/documentation/iokit/1514535-ioservicegetmatchingservice?language=objc

The Art of Mac Malware: Analysis

p. wardle

the IOServiceGetMatchingService function

On line #20, the assembly code moves a value from the r15 register into the edi register
(the 32bit part of the rdi register). Looking back to line numbers 9-10, we see the code
previously moving the kIOMasterPortDefault into the r15 register. The code on line #20 is
simply moving kIOMasterPortDefault into the edi register (as the first argument for the
call to IOServiceGetMatchingService).

On line #21, we see rax being moved into the rsi register (recall the rsi register is
used as the 2nd parameter for function calls). And (following a function call), the rax
register holds the result of the call. This means the rsi register will contain the
matching dictionary from the call to IOServiceMatching (made on line #15).

After the call to IOServiceGetMatchingService, an io_service_t service is returned (in
the rax register). Specifically, a service that matches IOPlatformExpertDevice.

Next, the code sets up the parameters for a call to the IORegistryEntryCreateCFProperty
function, which Apple documentation states “creates an instantaneous snapshot of a
registry entry property.” [14] In other words, the code is extracting the value of some
(IOKit) registry property. But which one?

18

https://developer.apple.com/documentation/iokit/1514293-ioregistryentrycreatecfproperty?language=objc

The Art of Mac Malware: Analysis

p. wardle

The parameter setup for the call to the IORegistryEntryCreateCFProperty function begins
by loading the kCFAllocatorDefault into the rdx register (lines #29-13). The rdx
register is used for the 3rd argument, which for the call to

IORegistryEntryCreateCFProperty is the “allocator to use” [12].

Next (line #32), the address of the string “IOPlatformSerialNumber” is loaded into the
rsi register. As the rsi register is used for the 2nd argument, this (according to
Apple’s documentation for the IORegistryEntryCreateCFProperty function) is the property
name of interest!

On line #33, rcx, the 4th argument (“options”), is initialized to zero (xoring of
oneself, sets oneself to zero). Finally, before making the call, the value from r15d is
moved into the 32bit part of the rdi register (edi). This has the effect of initializing

19

The Art of Mac Malware: Analysis

p. wardle

the first parameter (rdi) with the value of kIOMasterPortDefault (previously stored in
r15d).

After the call to IORegistryEntryCreateCFProperty, the rax register will hold the value
of the required property: IOPlatformSerialNumber.

Finally, the function invokes the CFStringGetCString function to convert the extracted
property (which is (CF)string object) to a plain null-terminated “C-string”. Of course,

the parameters have to be initialized prior to this call (lines #42-45).

The edx register (the 32bit part of the rdx, argument #3) is set to 0x20, which specifies
the output buffer size. Then the ecx register (the 32bit part of the rcx, argument #4) is
set to the kCFStringEncodingUTF8 (0x8000100). The first argument (rdi) is set to the
value of rax, which is the result of the call to IORegistryEntryCreateCFProperty: the
extracted property value of IOPlatformSerialNumber.

Finally, the 2nd argument (rsi) is set to r14. And what is in the r14 register? Scrolling
back all the way to line #6, we see it comes from rdi, which is (was) the value of the

parameter passed to the getDeviceSerial. Since Apple’s documentation for
CFStringGetCString states the 2nd argument is the “C string buffer into which to copy the
string,” [15] we now know the parameter passed to the getDeviceSerial function is a
buffer for a string!

This completes our (very thorough!) analysis of the malware’s getDeviceSerial function.
By focusing on the API calls made by this function, we were able to ascertain its exact

functionality: the retrieval of the infected system’s serial number

(IOPlatformSerialNumber) via IOKit. Moreover, via parameter analysis, we were able to
determine that the getDeviceSerial function would be invoked with a buffer for the serial
number.

...who needs source code right!?

However at this point, we can all agree that reading assembly code is rather tedious.

Luckily, due to recent advances in decompilers, there is hope!

Decompilation

Given a binary, such as a Mach-O, a disassembler can parse the file and translate the

binary code back into human-readable assembly, thus allowing detailed analysis to

commence.

20

https://developer.apple.com/documentation/corefoundation/1542721-cfstringgetcstring?language=objc

The Art of Mac Malware: Analysis

p. wardle

Decompilers seek to take this translation one step further by recreating a source-code

level representation of extracted binary code. Source-code (i.e. C or Objective-C)

representation is both more succinct and “readable” than (dis)assembly, making analysis

of unknown binaries a simpler task.

Recall the getDeviceSerial function from the Lazarus Group first-stage implant loader.
The full disassembly of this function is about 50 lines. The decompilation? ...around 15:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

 int getDeviceSerial(int * arg0) {
 r14 = arg0;

 ...

 r15 = kIOMasterPortDefault;

 rax = IOServiceMatching("IOPlatformExpertDevice");

 rax = IOServiceGetMatchingService(r15, rax);

 if (rax != 0x0) {

 rbx = CFStringGetCString(IORegistryEntryCreateCFProperty(rax,

 @"IOPlatformSerialNumber", kCFAllocatorDefault, 0x0), r14, 0x20,

 kCFStringEncodingUTF8) != 0x0 ? 0x1 : 0x0;

 IOObjectRelease(rax);

 }

 rax = rbx;

 return rax;

}

getDeviceSerial decompiled

The decompilation is quite readable, and thus it is relatively easy to understand the

logic of this function!

Similarly, the connectedToInternet function discussed early in the chapter, decompiles
decently as well (though the decompiler does see a little confused by the Objective-C

syntax ...though, who isn’t?):

01

02

03

04

05

06

07

08

int connectedToInternet()

{

 if((@class(NSData), &@selector(dataWithContentsOfURL:), (@class(NSURL),

 &@selector(URLWithString:), @"http://www.google.com")) != 0x0)

 {

 var_1 = 0x1;

 }

 else {

21

The Art of Mac Malware: Analysis

p. wardle

09

10

11

12

13

 var_1 = 0x0;

 }

 rax = var_1 & 0x1 & 0xff;

 return rax;

}

connectedToInternet decompiled
(OSX.Komplex)

📝 Note:

Taking into consideration the many benefits of decompilation over disassembly, one may
be wondering why disassembling was discussed at all.

First, even the best decompilers occasionally struggle to analyze complex binary code
(such as malware with anti-analysis logic). Disassemblers that simply translate binary
code (vs. attempt to (re)create source-code level representations) are far less
susceptible. Thus, “dropping down” to the assembly level code provided by the
disassembler may be the only option.

Second, as we saw in the above decompilation of the getDeviceSerial and
connectedToInternet functions, assembly code concepts (such as registers) are still
present in the code, and thus relevant.

While decompilation can greatly simplify the analysis of binary code, the ability to
understand (dis)assembly code is arguably a foundational skill in comprehensive malware
analysis.

Hands on With Hopper

So far, we’ve discussed the concepts of disassembly and decompilation without mentioning

specific tools which provide these services. Such tools can be somewhat complex and thus

a bit daunting to the beginner malware analyst. As such, here we’ll briefly discuss one

such tool (Hopper), providing a high-level, hands-on “quick start” guide to binary

analysis!

Hopper [16] is described by its creators as a,

“reverse engineering tool that lets you disassemble, decompile and debug your
applications.” [16]

22

https://www.hopperapp.com/

The Art of Mac Malware: Analysis

p. wardle

Reasonably priced and designed natively for macOS, Hopper boasts a powerful disassembler

and decompiler that excels at analyzing Mach-O binaries. It’s a solid choice for Mac

malware analysis.

📝 Note:

A free demo version of Hopper is available from:

https://www.hopperapp.com/download.html

If you’re familiar with or fond of another (perhaps more powerful) disassembler /
decompiler (such as IDA Pro or Ghidra), the specifics of this section may not apply.
However, at a conceptual level, they are broadly applicable across most
reverse-engineering tools.

In this brief introduction to Hopper, we’ll disassemble and decompile Apple’s standard

“Hello World” (Objective-c) code:

01

02

03

04

05

06

07

08

09

 #import <Foundation/Foundation.h>

 int main(int argc, const char * argv[]) {

 @autoreleasepool {

 // insert code here...
 NSLog(@"Hello, World!");

 }

 return 0;

}

Apple’s “Hello World” template code

Though trivial it affords us with an example binary, sufficient for illustrating many of

Hopper’s features and capabilities. An understanding of such features and capabilities,

of course, is imperative for the analysis of more complex (malicious) binaries.

We start by compiling the above Objective-C code, and confirm it is now (as expected), a

standard 64-bit Mach-O binary:

$ file helloWorld/Build/Products/Debug/helloWorld

helloWorld: Mach-O 64-bit executable x86_64

23

https://www.hopperapp.com/download.html?
https://www.hex-rays.com/products/ida/
https://ghidra-sre.org/

The Art of Mac Malware: Analysis

p. wardle

First, launch Hopper.app. To start analysis of our helloWorld (or any) Mach-O binary
simply choose: File -> Open (⌘+O). Select the Mach-O binary for analysis and in the
loader window that is shown leave the defaults selected, and click ‘OK’:

Loader Window

(Hopper.app)

Hopper will automatically begin analysis of the binary, which includes:

■ Parsing the Mach-O header

■ Disassembling the binary code

■ Extracting embedded strings, function/methods names, etc.

Once its analysis is complete, Hopper will automatically display the disassembled code at

the binary’s entry point (extracted from the LC_MAIN load command in the Mach-O header).

...but first, let’s look at various information and options within the Hopper UI.

On the far right is the “inspector” view. This is where Hopper displays general

information about the binary being analyzed, including the type of binary (Mach-O),

architecture/CPU (Intel x86_64), and calling convention (System V):

24

The Art of Mac Malware: Analysis

p. wardle

basic file information

(Hopper.app)

On the far left, is a segment-selector that can toggle between various views related to

symbols and strings in the binary. For example, the “Proc.” view shows procedures that

Hopper has identified during its analysis. This includes functions and methods from the

original source code, as well as APIs that the code invokes. For example, in our “hello

world” binary, Hopper has identified the main function and the call to Apple’s NSLog API:

procedure view

(Hopper.app)

25

The Art of Mac Malware: Analysis

p. wardle

The “Str” view shows the embedded strings that Hopper has extracted from the binary. In

our simple binary, the only embedded string is “Hello, World!”:

(embedded) strings view

(Hopper.app)

Before diving into the disassembly, it’s wise to peruse the extracted procedure names and

embedded strings as they are often an invaluable source of information about the

(possible) capabilities of the malware. Moreover, they can guide analysis efforts. Does a

procedure name or embedded string look of interest? Simply click on it, and Hopper will

show you exactly where it’s referenced in the binary.

By default, Hopper will automatically display the disassembly of the binary’s entry point

(often the main function). Here’s the disassembly of the main function in its entirety:

26

The Art of Mac Malware: Analysis

p. wardle

“Hello World” disassembled

(Hopper.app)

...fairly standard (dis)assembly. However, Hopper does provide helpful annotations such

as identifying function names (i.e. mapping imp__stubs__NSLog to NSLog). Moreover, as it
also generally understands API prototypes, it will identify function/method parameters

and annotate the assembly code as such.

For example, for the assembly code at address 0x0000000100000f42 which moves the rcx
register (a pointer to our “Hello, World!” string) into rdi, Hopper has identified this
as initializing the arguments for a call to NSLog (a few lines later).

Various components within the disassembly are actually pointers to data elsewhere in the

binary. For example, the assembly code at 0x0000000100000f3b (lea rcx, qword
[cfstring_Hello__World_]) is loading the address of the “Hello, World!” string into the
rcx register.

Hopper is smart enough to identify the cfstring_Hello__World_ variable as a pointer and
thus annotate the assembly code with the value (bytes) of the string (“Hello, World!”).

Moreover, if one double-clicks on any pointer, Hopper will jump to the pointer’s address.

For example, clicking twice on the cfstring_Hello__World_ variable in the disassembly
takes you to the string object at address 0x0000000100001008:

01

02

03

04

05

cfstring_Hello__World_: ; "Hello, World!"

0x0000000100001008 dq 0x0000000100008008,
0x0000000100001010 dq 0x00000000000007c8,

0x0000000100001018 dq 0x0000000100000fa2,

0x0000000100001020 dq 0x000000000000000d

This string object (of type CFConstantString) itself contains pointers ...and
double-clicking on those again takes you to the specified address.

For example, at offset +0x0 is a pointer with the value of 0x0000000100008008.
Double-clicking on this value takes us to a symbol labeled

___CFConstantStringClassReference (the class type of the string object). While at offset
+0x10 is a pointer to the actual bytes of the string (found at 0x0000000100000fa2):

01

02

aHelloWorld:

0x0000000100000fa2 db "Hello, World!", 0 ; DATA XREF=cfstring_Hello__World_

27

The Art of Mac Malware: Analysis

p. wardle

Note that Hopper also tracks (backwards) cross-references! For example, it has identified

that the string bytes (at address 0x0000000100000fa2) are cross-referenced by the
cfstring_Hello__World_ variable. That is to say, the cfstring_Hello__World_ variable
contains a reference to the 0x0000000100000fa2 address.

Such cross-references greatly facilitate static analysis of the binary code. For example,

if you notice a string of interest, you can simply ask Hopper where in the code that

string is referenced. To view such cross-references, control-click on the address or item

and select “References to …” ...or with the address/item selected simply hit “X”.

For example, say we want to see where in disassembly, the “Hello World!” string object is

referenced. First we select the string object (at address 0x0000000100001008),
control-click to bring up the context menu, and “References to cfstring_Hello__World”:

cross references

(Hopper.app)

...which brings up the “Cross References” window of that item:

28

The Art of Mac Malware: Analysis

p. wardle

cross reference window

(Hopper.app)

In this example there is only one cross-reference, the code at address 0x0000000100000f3b
(which falls within the main function). Click on this to jump to the code in the main
function, which references the “Hello World” string object:

“Hello World” (cf)string

(Hopper.app)

Hopper also creates cross-references for functions, methods, and API calls so that you

29

The Art of Mac Malware: Analysis

p. wardle

can easily determine where in code these are invoked. For example, we can see via the

following “Cross References” window that the NSLog API is invoked within the main
function, specifically at 0x0000000100000f4b:

cross reference window

(Hopper.app)

Cross-references greatly facilitate analysis and can efficiently lead to an understanding

of the binary’s functionality or capabilities. For example, when analyzing a suspected

malware sample, one can locate APIs of interest (perhaps Apple’s networking methods that

may reveal a connection to a C&C server?) in Hoppers “Proc” view. From this view follow

their cross-references to quickly locate relevant code to fully understand how these APIs

are being used.

When bouncing around in Hopper (for example following pointer or cross-references), one

often wants to quickly return to a previous spot of analysis. Luckily the “esc” key is

mapped to “back” and will take you back to where you just were, or further (on multiple

key presses).

So far we’ve stayed in Hopper’s default display mode: “Assembly Mode.” As the name

suggests, this mode displays (dis)assembly of binary code. The display mode can be

toggled via a segment control found in Hopper’s main toolbar:

30

The Art of Mac Malware: Analysis

p. wardle

display modes

(Hopper.app)

Hopper’s supported display modes include:

■ Assembly mode:

The standard disassembly mode, in which Hopper “prints the lines of assembly code,
one after the other.” [15]

■ Control Flow Graph mode:

This mode breaks down procedures (e.g. functions) into condition blocks and

illustrates the control flow between them.

■ Pseudo-Code mode:

This is Hopper’s decompiler mode, in which a “source-code like” or pseudo-code

representation is generated.

■ Hex mode:

This mode shows the raw hex bytes of the binary, which is about as low-level as you

can get!

Of the four display modes, the pseudo-code (decompiler) mode is arguably the most

powerful. To enter this mode, first select a procedure, then click on the 3rd button in

the Display Modes segment control:

display modes: decompilation

(Hopper.app)

This will instruct Hopper to decompile the code in the procedure in order to generate a

pseudo-code representation of the binary code. For our simple example “Hello World”

program, it does a lovely job:

31

The Art of Mac Malware: Analysis

p. wardle

...it almost looks exactly like the original source code:

01

02

03

04

05

06

07

08

09

 #import <Foundation/Foundation.h>

 int main(int argc, const char * argv[]) {

 @autoreleasepool {

 // insert code here...
 NSLog(@"Hello, World!");

 }

 return 0;

}

Apple’s “Hello World”

...thus, making the binary analysis (of this trivial binary) a breeze!

This wraps up our overview of the Hopper reverse-engineering tool. While brief, it

provides the basics to begin reversing Mach-O binaries!

📝 Note:

For a more comprehensive “how to” on using and understanding Hopper, check out the
application’s official tutorial:

https://www.hopperapp.com/tutorial.html [16]

Up Next

Armed with a solid understanding of static analysis techniques, ranging from basic file

type identification to advanced decompilation, we’re now ready to turn our attention to

32

https://www.hopperapp.com/tutorial.html

The Art of Mac Malware: Analysis

p. wardle

methods of dynamic analysis. As we’ll see, such dynamic analysis often provides a more

efficient means of performing malware analysis.

Ultimately though, static and dynamic analysis are complementary; their combination

provides the ultimate analysis approach.

33

The Art of Mac Malware: Analysis

p. wardle

References

1. “Hacker Disassembling Uncovered”

https://www.amazon.com/Hacker-Disassembling-Uncovered-Kris-Kaspersky/dp/1931769648

2. “Reversing: Secrets of Reverse Engineering”

https://www.amazon.com/Reversing-Secrets-Engineering-Eldad-Eilam/dp/0764574817

3. “x86 assembly language”

https://en.wikipedia.org/wiki/X86_assembly_language

4. objc_msgSend function

https://developer.apple.com/documentation/objectivec/1456712-objc_msgsend

5. “Modern Objective-C Exploitation Techniques”

http://www.phrack.org/issues/69/9.html

6. “The Objective-C Runtime: Understanding and Abusing”

http://www.phrack.org/issues/66/4.html

7. “Sofacy’s ‘Komplex’ OS X Trojan”

https://unit42.paloaltonetworks.com/unit42-sofacys-komplex-os-x-trojan/

8. NSData’s dataWithContentsOfURL: method

https://developer.apple.com/documentation/foundation/nsdata/1547245-datawithcontent

sofurl

9. “TEST (x86 instruction)”
https://en.wikipedia.org/wiki/TEST_(x86_instruction)

10. “Lazarus Group Goes 'Fileless'”
https://objective-see.com/blog/blog_0x51.html

11. “kIOMasterPortDefault”
https://developer.apple.com/documentation/iokit/kiomasterportdefault?language=objc

12. “IOServiceMatching”
https://developer.apple.com/documentation/iokit/1514687-ioservicematching?language=
objc

13. “IOServiceGetMatchingService”
https://developer.apple.com/documentation/iokit/1514535-ioservicegetmatchingservice

34

https://www.amazon.com/Hacker-Disassembling-Uncovered-Kris-Kaspersky/dp/1931769648/ref=sr_1_4?dchild=1&qid=1590136570&refinements=p_27%3AKris+Kaspersky&s=books&sr=1-4&text=Kris+Kaspersky
https://www.amazon.com/Reversing-Secrets-Engineering-Eldad-Eilam/dp/0764574817
https://en.wikipedia.org/wiki/X86_assembly_language
https://developer.apple.com/documentation/objectivec/1456712-objc_msgsend
http://www.phrack.org/issues/69/9.html
http://www.phrack.org/issues/66/4.html
https://unit42.paloaltonetworks.com/unit42-sofacys-komplex-os-x-trojan/
https://developer.apple.com/documentation/foundation/nsdata/1547245-datawithcontentsofurl
https://developer.apple.com/documentation/foundation/nsdata/1547245-datawithcontentsofurl
https://en.wikipedia.org/wiki/TEST_(x86_instruction)
https://objective-see.com/blog/blog_0x51.html
https://developer.apple.com/documentation/iokit/kiomasterportdefault?language=objc
https://developer.apple.com/documentation/iokit/1514687-ioservicematching?language=objc
https://developer.apple.com/documentation/iokit/1514687-ioservicematching?language=objc
https://developer.apple.com/documentation/iokit/1514535-ioservicegetmatchingservice?language=objc

The Art of Mac Malware: Analysis

p. wardle

?language=objc

14. “IORegistryEntryCreateCFProperty”
https://developer.apple.com/documentation/iokit/1514293-ioregistryentrycreatecfprop
erty?language=objc

15. “CFStringGetCString”
https://developer.apple.com/documentation/corefoundation/1542721-cfstringgetcstring
?language=objc

16. Hopper
https://www.hopperapp.com/

17. Hopper Tutorial
https://www.hopperapp.com/tutorial.html

35

https://developer.apple.com/documentation/iokit/1514535-ioservicegetmatchingservice?language=objc
https://developer.apple.com/documentation/iokit/1514293-ioregistryentrycreatecfproperty?language=objc
https://developer.apple.com/documentation/iokit/1514293-ioregistryentrycreatecfproperty?language=objc
https://developer.apple.com/documentation/corefoundation/1542721-cfstringgetcstring?language=objc
https://developer.apple.com/documentation/corefoundation/1542721-cfstringgetcstring?language=objc
https://www.hopperapp.com/
https://www.hopperapp.com/tutorial.html

