
The Art of Mac Malware: Analysis

p. wardle

 Chapter 0x6: Binary Triage

📝 Note:

This book is a work in progress.

You are encouraged to directly comment on these pages ...suggesting edits, corrections,
and/or additional content!

To comment, simply highlight any content, then click the icon which appears (to the
right on the document’s border).

1

The Art of Mac Malware: Analysis

p. wardle

Content made possible by our ​Friends of Objective-See​:

Airo SmugMug Guardian Firewall SecureMac iVerify Halo Privacy

Apple notes that Mach-O, (shorthand for “Mach object file format”), “​is the native
executable format of binaries in OS X and is the preferred format for shipping code.​” [1]

As the majority of Mac malware is compiled into and distributed as Mach-O binaries, it is

important to have a solid understanding of this file format.

$ file Final_Presentation.app/Contents/MacOS/usrnode

Final_Presentation.app/Contents/MacOS/usrnode: Mach-O 64-bit executable x86_64

a 64-bit Mach-O executable

(OSX.WindTail)

Unfortunately, as Mach-O is a binary file format, analyzing and understanding such files

requires specific analysis tools. Tools that often culminate with a disassembler.

📝 Note:

For the definitive guide on Mach-O binaries, see Apple’s documentation:

“​OS X ABI Mach-O File Format Reference​” [1]

Executable binary file formats are rather complex, and the Mach-O file format is no

exception. The good news is that one only needs an elementary understanding of the Mach-O

file format and several related concepts for malware analysis purposes.

📝 Note:

For the interested reader, an in-depth, and frankly quite excellent, writeup on the
Mach-O file format can be found here:

2

https://objective-see.com/friends.html
https://www.airoav.com/
https://www.smugmug.com/
https://guardianapp.com/
https://www.securemac.com/
https://apps.apple.com/us/app/iverify/id1466120520
https://www.haloprivacy.com/
https://github.com/aidansteele/osx-abi-macho-file-format-reference

The Art of Mac Malware: Analysis

p. wardle

“​Parsing Mach-O File​” [2]

At a basic level, a Mach-O file consists of three sequential parts, or regions: a header,

load commands, and data.

Mach-O Header

Mach-O files start with a Mach-O header:

“​At the beginning of every Mach-O file is a header structure that identifies the
file as a Mach-O file. The header also contains other basic file type information,

indicates the target architecture, and contains flags specifying options that

affect the interpretation of the rest of the file.​” [1]

A Mach-O header is a structure of type ​mach_header_64​ ​(or 32-bit ​mach_header​), defined in
mach-o/loader.h​:

01

02

03

04

05

06

struct mach_header_64 {

 uint32_t magic; /* mach magic number identifier */

 cpu_type_t cputype; /* cpu specifier */

 cpu_subtype_t cpusubtype; /* machine specifier */

 uint32_t filetype; /* type of file */

 uint32_t ncmds; /* number of load commands */

3

https://lowlevelbits.org/parsing-mach-o-files/

The Art of Mac Malware: Analysis

p. wardle

07

08

09

 uint32_t sizeofcmds; /* the size of all the load commands */

 uint32_t flags; /* flags */

 uint32_t reserved; /* reserved */

};

mach_header_64 structure

(mach-o/loader.h)

Apple’s comments in the ​loader.h​ file should provide a sufficient, albeit succinct,
description of each member (within the ​mach_header_64​ structure).

Of particular note is the ​filetype​ member, which describes the type of file. Several
possible values include (from ​mach-o/loader.h​):

■ MH_EXECUTE​ (0x2)
Standard Mach-O executable

■ MH_DYLIB​ (0x6)
A Mach-O dynamic linked library (i.e. .dylib)

■ MH_BUNDLE​ (0x8)
A Mach-O bundle (i.e. .bundle)

To dump, or parse, the contents of a Mach-O file one can make use of the ​/usr/bin/otool
utility. For example, to dump the Mach-O header, execute ​otool​ with the ​-hv​ flags:

$ otool -hv Final_Presentation.app/Contents/MacOS/usrnode

Mach header
 magic cputype cpusubtype filetype ncmds sizeofcmds
MH_MAGIC_64 X86_64 ALL EXECUTE 23 3928

Dumping OSX.WindTail’s Mach-O header

(via ​otool​)

Or, if you prefer a UI, ​MachOView​ [3] is a lovely utility!

4

https://sourceforge.net/projects/machoview/

The Art of Mac Malware: Analysis

p. wardle

Dumping a Mach-O header

(via MachOView)

📝 Note:

Apple notes that a “​Mach-O file contains code and data for one architecture​.” [1]

In order to create a single binary that can execute on systems with different
architectures (i.e. 32-bit, 64-bit, etc.), multiple Mach-O binaries can be wrapped in a
universal (or “fat”) binary.

Such binaries start with a header (type: fat_header), then the architecture-specific
Mach-O binaries concatenated together.

One can dump the fat_header via: otool -fv

Mach-O Load Commands

Following the Mach-O header are the binary’s load commands, which instruct (“command”)

the dynamic loader (​dyld​) how to, well, load (and layout) the binary in memory.

5

The Art of Mac Malware: Analysis

p. wardle

“​Directly following the header are a series of variable-size load commands that
specify the layout and linkage characteristics of the file. Among other

information, the load commands can specify:

■ The initial layout of the file in virtual memory

■ The location of the symbol table (used for dynamic linking)

■ The initial execution state of the main thread of the program

■ The names of shared libraries that contain definitions for the main

executable’s imported symbols​” [1]

A Mach-O binary’s load commands can be viewed via the ​otool​, using the ​-l​ flag:

$ otool -l Final_Presentation.app/Contents/MacOS/usrnode
…

Load command 0
 cmd LC_SEGMENT_64
 cmdsize 72
 segname __PAGEZERO
 vmaddr 0x0000000000000000
 vmsize 0x0000000100000000
 fileoff 0
 filesize 0
 maxprot 0x00000000
 initprot 0x00000000
 nsects 0
 flags 0x0
Load command 1
 cmd LC_SEGMENT_64
 cmdsize 952
 segname __TEXT
 vmaddr 0x0000000100000000
 vmsize 0x0000000000013000
 fileoff 0
 filesize 77824
 maxprot 0x00000007
 initprot 0x00000005
 nsects 11
 flags 0x0

...

Dumping ​OSX.WindTai​l’s load commands
(via ​otool​)

6

The Art of Mac Malware: Analysis

p. wardle

We’re aiming to gain a foundational understanding of the Mach-O file format for the

purpose of malware analysis, so we won’t cover all supported load commands. However,

several are quite pertinent.

Load commands all begin with a ​load_command​ ​structure, defined in ​mach-o/loader.h​:

01

02

03

04

struct load_command {

 uint32_t cmd; /* type of load command */

 uint32_t cmdsize; /* total size of command in bytes */

};

load_command​ structure
(​mach-o/loader.h​)

Here, ​load_command.cmd​ describes the type of load command, while the size of the load
command is specified in ​load_command.cmdsize​. Note that the load command’s data follows
immediately after the ​load_command​ structure, and such data is specific to the type of
the load command:

A common type of load command is ​LC_SEGMENT/LC_SEGMENT_64​, which describes a segment.
Apple defines a segment in the following manner:

“​A segment defines a range of bytes in a Mach-O file and the addresses and memory
protection attributes at which those bytes are mapped into virtual memory when the

dynamic linker loads the application.​” [1]

As shown in the following image, ​LC_SEGMENT/LC_SEGMENT_64​ load commands contain all the
relevant information for the dynamic loader (​dyld​) to map the segment into memory (and
set its memory permissions):

7

The Art of Mac Malware: Analysis

p. wardle

LC_SEGMENT/LC_SEGMENT_64​ load command

Several segments you’ll likely encounter while analyzing Mach-O binaries include:

■ __TEXT​ segment
Contains executable code and data that is read-only

■ __DATA​ segment
Contains data that is writable

■ __LINKEDIT​ segment
Contains information for the linker (​dyld​) such as, “​symbol, string, and relocation
table entries.​” [1]

If the binary was written in objective-C, it may have an ​__OBJC​ segment that contains
information used by the Objective-C runtime. Though this information might also be found

in the ​__DATA​ segment, within various in ​__objc_*​ sections.

📝 Note:

Segments can contain multiple sections (each section containing code or data of the
same types). More on sections below...

8

The Art of Mac Malware: Analysis

p. wardle

Once a binary is loaded into memory (by the dynamic linker/loader ​dyld​), execution begins
at the binary’s entry point. How does the ​dyld​ locate said entry point? Via the ​LC_MAIN
load command!

This load command is (cumulatively) a structure of type ​entry_point_command​:

01

02

03

04

05

06

struct entry_point_command {

 uint32_t cmd; /* LC_MAIN only used in MH_EXECUTE filetypes */

 uint32_t cmdsize; /* 24 */

 uint64_t entryoff; /* file (__TEXT) offset of main() */

 uint64_t stacksize;/* if not zero, initial stack size */

};

LC_MAIN​’s ​entry_point_command​ structure
(​mach-o/loader.h​)

The most important member of the ​LC_MAIN​ load command is the ​entryoff​, which contains the
offset of the binary’s entry point. At load time, ​dyld​ simply adds this value to the
(in-memory) base of the binary, then jumps to this instruction to kickoff execution of

the binary’s code.

"​LC_MAIN gives the address of the entry point (main()) and [the loader] dyld jumps
right to that...​" [4]

📝 Note:

The LC_MAIN load command replaces the deprecated LC_UNIXTHREAD load command.

If you’re analyzing older Mach-O binaries, you may still come across the ​LC_UNIXTHREAD​,
which contains the entire context (read: register values) of the initial thread. The
EIP/RIP​ register in this context contains the address of the binary’s initial entry
point.

📝 Note:

A Mach-O binary can contain one or more constructors, that will be executed ​before​ ​the
address specified in LC_MAIN.

The offsets of any constructors are held in the __mod_init_func section of the
__DATA_CONST segment.

9

The Art of Mac Malware: Analysis

p. wardle

More on this topic shortly, but be aware when analyzing Mac malware that execution may
begin within such a constructor, prior to the binary’s main entry point (​LC_MAIN​).

When analyzing Mac malware, another relevant load command type is ​LC_LOAD_DYLIB​. In
short, the ​LC_LOAD_DYLIB​ load command describes a dynamic library dependency which
instructs the loader (​dyld​) to load and link said library. There is a ​LC_LOAD_DYLIB​ ​load
command for each library that the Mach-O binary requires (i.e. has a dependency on).

This load command is (cumulatively) a structure of type ​dylib_command​ (which contains a
struct dylib​, describing the actual dependent dynamic library):

01

02

03

04

05

06

07

08

09

10

11

12

struct dylib_command {

 uint32_t cmd; /* LC_LOAD_{,WEAK_}DYLIB */

 uint32_t cmdsize; /* includes pathname string */

 struct dylib dylib; /* the library identification */

};

struct dylib {

 union lc_str name; /* library's path name */

 uint32_t timestamp; /* library's build time stamp */

 uint32_t current_version; /* library's current version number */

 uint32_t compatibility_version; /* library's compatibility vers number*/

};

LC_LOAD_DYLIB​’s ​dylib_command​ & ​dylib​ structures
(​mach-o/loader.h​)

To parse a Mach-O binary’s ​LC_LOAD_DYLIB​ load command to view the binary’s dependencies,
use the ​otool​ utility, with the ​-L​ flag. Or, ​MachOView​ [3] works as well.

10

https://sourceforge.net/projects/machoview/

The Art of Mac Malware: Analysis

p. wardle

From a malware analysis point of view, a binary’s ​LC_LOAD_DYLIB​ load commands can shed
insight into the capabilities of malware. For example, a binary that contains a

LC_LOAD_DYLIB​ load command that references the ​DiskArbitration​ library may be interested
in monitoring USB drives (perhaps to exfil files off such drives). A dependency on the

AVFoundation​ library may indicate that the malware seeks to capture audio and video from
infected systems.

11

The Art of Mac Malware: Analysis

p. wardle

Ascertaining capabilities via ​LC_LOAD_DYLIB​ load commands
(​OSX.Mokes​)

Mach-O Data (Segments)

Recall the following diagram representing the (basic) structure of a Mach-O binary:

12

The Art of Mac Malware: Analysis

p. wardle

Following the Load Commands is the rest of the Mach-O binary, largely consisting of the

actual binary code. Such data is organized into segments, described by

LC_SEGMENT/LC_SEGMENT_64​ ​Load Commands, which can contain multiple sections. As Apple
notes, each section contains code or data of the same type:

“​A Mach-O binary is organized into segments. Each segment contains one or more
sections. Code or data of different types goes into each section.​” [5]

For example, the ​_TEXT​ segment contains executable code and data that is read-only.
Common sections within this segment may include:

■ __text

Compiled binary code

■ __const

Constant data

■ __cstring

String constants

The ​__DATA​ segment contains data that is writable. A few of the (more common) sections
within this segment may include:

■ __data

Global variables (that have been initialized)

■ __bss

Static variables (that have not been initialized)

■ __objc_*​ (​__objc_classlist​, ​__objc_protolist​, etc)
Information used by the Objective-C runtime

13

The Art of Mac Malware: Analysis

p. wardle

Mach-O sections/segments

With an elementary understanding of the Mach-O file format, let’s now focus our attention

on tools and techniques that aim to answer the question forever faced by malware

analysts: “is this (Mach-O) binary malicious!?”

Static Analysis of Mach-O Files

Generally speaking, the goal of malware analysis is to classify a sample as benign,

malicious (but known), or malicious (and previously unknown).

If a sample turns out to be benign, hooray you’re done! ...generally no point (from a

malware analysts point of view) to continuing analyzing a legitimate and benign piece of

software.

If a sample is malicious, but is a known malware sample, (unless you’re analyzing the

sample for educational purposes), you’re done as well. It’s likely that analysis reports

and indicators of compromise (IoCs) have already been created for the sample.

14

The Art of Mac Malware: Analysis

p. wardle

However, if you determine the sample is malicious and appears to either be a new variant,

or an entirely new specimen, well, you’re not done - yet! Such samples generally require

a full analysis and report, as well as the creation of IoCs.

A key point is to classify samples efficiently. As, speaking from personal experience,

spending several days analyzing a sample only to find out it is a well known piece of

malware can be frustrating. Though of course, the educational experience of such a

process has its merits.

Due to their readability, it is often quite trivial to classify scripts, and other

non-binary file formats, as benign or malicious. However, binary file formats (read:

Mach-O) require a myriad of tools to both classify and comprehensively analyze.

As such, let’s now dive into the static analysis of Mach-O binaries.

As noted, static analysis of Mach-O binaries generally requires tools. Such tools

generally have some understanding of the Mach-O file format, though more elementary ones

may be file type agnostic.

Also, recall our goal to efficiently classify a binary as benign or malicious and, for

malicious binaries, identify it as an already known sample.

15

The Art of Mac Malware: Analysis

p. wardle

To accomplish this, we’ll start by extracting and analyzing various file attributes, such

as:

■ Hashes

■ Code-signing information

■ Embedded strings

If one cannot ascertain if a sample is benign or malicious via these elementary tools and

techniques, more comprehensive tools may be required (such as a disassembler ...covered

in the next chapter).

Hashes

One of the simplest ways to determine if a Mach-O binary is known, and thus has already

been classified as benign or malicious, is to simply compute and look up its hash online.

Hashing algorithms, such as MD5 and SHA-*, are most commonly used in public file

repositories of online malware collections. Luckily, macOS ships with built-in utilities

for computing such hashes (​/sbin/md5​ and ​/usr/bin/shasum​).

Here, we generate both the MD5 and SHA-1 hash of Mach-O binary (​usrnode​) found within a
suspicious application bundle:

$ md5 Final_Presentation.app/Contents/MacOS/usrnode
MD5 (usrnode) = c68a856ec8f4529147ce9fd3a77d7865

$ shasum -a 1 Final_Presentation.app/Contents/MacOS/usrnode
758f10bd7c69bd2c0b38fd7d523a816db4addd90 usrnode

Hashing

If you’re more comfortable using a UI utility, the ​WhatsYourSign​ tool [6] (created by
yours truly), will compute ​MD5​, ​SHA-1​ ​-256​, and ​-512​ hashes of files:

16

https://objective-see.com/products/whatsyoursign.html

The Art of Mac Malware: Analysis

p. wardle

WhatsYourSign​ tool [6]

Googling the (MD5) hash, ​C68A856EC8F4529147CE9FD3A77D7865​, readily identifies this binary
as ​OSX.WindTail​:

17

https://objective-see.com/products/whatsyoursign.html

The Art of Mac Malware: Analysis

p. wardle

Searching for this same hash on ​VirusTotal​ [7], a free online antivirus “scanning portal”
with a large collection of scan results, confirms this identification as well:

18

https://www.virustotal.com/

The Art of Mac Malware: Analysis

p. wardle

C68A856EC8F4529147CE9FD3A77D7865​ -> ​OSX.WindTail
(VirusTotal)

If our goal was to simply classify the binary (​usrnode​) as benign or malicious, and if
malicious, attempt to identify the sample, we’ve just accomplished this goal! ...simply

via the binary’s hash.

📝 Note:

Hashes are a great way to conclusively match two binaries. For example, matching an
unknown binary with a piece of legitimate software, or a known malware sample.

However, hashes are quite ‘brittle’ as any file change will result in a completely
different hash. As such, if a malware author modifies even a single bit there may be
zero hash matches.

Thus, hashing should be seen as a technique to identify known files that may have
already been classified as benign or malicious. However, if no hash match is found,
this should not be used as a metric to classify the file’s nature. Other analysis tools
and techniques should be leveraged.

Code Signing Information

19

The Art of Mac Malware: Analysis

p. wardle

Due to various Apple efforts, such as file quarantine, notarization, etc, the majority of

software on macOS is signed. Such signing information may include:

■ Code-signing identifier

■ Code-signing authorities

■ Team identifier

As Apple notes, this allows one to confirm that a binary “​is from a known source and [it]
hasn’t been modified since it was last signed.​” [8]

By extracting the code-signing information of (signed) Mach-O binaries, one may be able

to quickly ascertain that an unknown binary is benign, or in some cases match it with

known malware or malware creator. For example, if you are analyzing an unknown binary,

and it is signed by Apple proper, rest assured, that binary is not malicious! On the

other hand, if a binary is unsigned, or claims to be from a well established company but

isn’t signed by said company, this may be cause for further analysis.

Trojanized Firefox

(OSX/CreativeUpdater) [9]

Like hashes, code-signing information can also be used to find file matches online, and

in some cases matching unknown files to known malware. For example, searching for the

aforementioned ​usrnode​ binary’s code-signing Team Identifier, ​95RKE2AA8F​, quickly leads
us to a match identifying it as a (known) sample associated with the WINDSHIFT malware

family (specifically ​OSX.WindTail​):

20

The Art of Mac Malware: Analysis

p. wardle

Team Identifier

(OSX.WindTail’s)

Finally, if a Mach-O binary is signed, but its certificate has been revoked (by Apple),

this is a red flag and likely indicates the binary is malicious.

Code signing information may be extracted from a Mach-O binary via Apple’s

/usr/bin/codesign​ utility (using the ​-dvv​ flags):

$ codesign -dvv Final_Presentation.app/Contents/MacOS/usrnode
Executable=Final_Presentation.app/Contents/MacOS/usrnode
Identifier=com.alis.tre
Format=app bundle with Mach-O thin (x86_64)

Authority=(unavailable)

TeamIdentifier=95RKE2AA8F

extracting a binary’s code signing information

(​OSX.WindTail​)

This ​OSX.WindTail​ sample is signed, but has no signing authorities
(‘​Authority=(unavailable)​’). This indicates the sample is self-signed (ad hoc).
Anecdotally speaking, self-signed binaries are rarely legitimate.

Looking at a legitimate Mach-O binary (Apple’s built-in Calculator application), shows

the full signing authority chain (Apple Root CA -> Apple Code Signing Certification

Authority -> Software Signing):

$ codesign -dvv /System/Applications/Calculator.app/Contents/MacOS/Calculator
Executable=/System/Applications/Calculator.app/Contents/MacOS/Calculator
Identifier=com.apple.calculator

21

The Art of Mac Malware: Analysis

p. wardle

Format=app bundle with Mach-O thin (x86_64)

Authority=Software Signing
Authority=Apple Code Signing Certification Authority
Authority=Apple Root CA

TeamIdentifier=not set

legitimately signed (Apple) application

(​Calculator.app​)

A legitimate, signed 3rd-party application provides an example of a binary signed with an

Apple Developer ID (note authority #2, “​Developer ID Certification Authority​”):

$ codesign -dvv KnockKnock.app/Contents/MacOS/KnockKnock
Executable=KnockKnock.app/Contents/MacOS/KnockKnock
Identifier=com.objective-see.KnockKnock
Format=app bundle with Mach-O thin (x86_64)

Authority=Developer ID Application: Objective-See, LLC (VBG97UB4TA)
Authority=Developer ID Certification Authority
Authority=Apple Root CA

TeamIdentifier=VBG97UB4TA

legitimately signed (3rd-party) application

Finally, ​codesign​ will simply display: “​code object is not signed at all​” for unsigned
Mach-O binaries.

We noted earlier that if the code-signing certificate used to sign a Mach-O has been

revoked, this may mean the binary was deemed (by Apple) to be malicious.

Using macOS’s ​/usr/sbin/spctl​ utility, one can check the status of a binary’s
code-signing certificate. If a certificate has been revoked, the utility will display

CSSMERR_TP_CERT_REVOKED​:

$ spctl --assess Final_Presentation.app/Contents/MacOS/usrnode
Final_Presentation.app/Contents/MacOS/usrnode: CSSMERR_TP_CERT_REVOKED

revoked code-signing certificate (​CSSMERR_TP_CERT_REVOKED​)
(​OSX.WindTail​)

22

The Art of Mac Malware: Analysis

p. wardle

The ​WhatsYourSign​ tool [6] can also be used to extract code-signing information from
Mach-O binaries, albeit directly via the UI. Here, an ​OSX.WindTail​ specimen:

WhatsYourSign

📝 Note:

Code-signing is an important, albeit involved topic. Interested in learning more? See:

■ Code Signing – Hashed Out​ [10]

■ macOS Code Signing In Depth​ [11]

Strings

Though the Mach-O file format is a binary file format (i.e. not directly ‘readable’ by

mere mortals), various non-binary data may still be found within it ...for example,

strings (defined here as sequences of printable characters).

Using the aptly named ​/usr/bin/strings​ ​utility, one can extract strings from a compiled
Mach-O binary. Such strings can include:

23

https://objective-see.com/products/whatsyoursign.html
https://papers.put.as/papers/macosx/2015/CodeSigning-RSA.pdf
https://developer.apple.com/library/archive/technotes/tn2206/_index.html

The Art of Mac Malware: Analysis

p. wardle

■ debug or error messages

■ method or function names

■ configuration files and/or urls

...which can provide valuable insight into the capabilities of the binary being analyzed.

strings ...for the win!

$ man strings
NAME
 strings - find the printable strings in a object, or other binary, file

DESCRIPTION
 Strings looks for ASCII strings in a binary file or standard input.
A string is any sequence of 4 (the default) or more printing characters [ending at,
but not including, any other character or EOF].

Unless the - flag is given, strings looks in all sections of the object files except
the (__TEXT,__text) section. If no files are specified standard input is read.

strings​’s man page

24

The Art of Mac Malware: Analysis

p. wardle

📝 Note:

When extracting strings from a binary, always run the strings utility with the “-”
flag. As noted in its man page, this “​causes strings to look for strings in all bytes
of the files.​” [12] Otherwise, strings will only scan certain sections of the file!

Also, the strings​ ​utility only scans for ASCII strings, thus unicode strings may be
missed! A ‘unicode’ aware utility (such as most disassemblers) can be used to extract
such multi-character strings.

Finally, the string utility (by design) is fairly ‘dumb,’ in the sense that it simply
displays sequences of printable characters. As such, many random sequences of binary
values, that just happen to be printable, may be displayed. However, valid strings of
interest should be easy to spot in the output.

Here, we run strings on a unknown Mach-O binary (​usrnode​):

$ strings - Final_Presentation.app/Contents/MacOS/usrnode
...

GenrateDeviceName
m_ComputerName_UserName
m_uploadURL

BouCfWujdfbAUfCos/iIOg==
Bk0WPpt0IFFT30CP6ci9jg==
RYfzGQY52uA9SnTjDWCugw==
XCrcQ4M8lnb1sJJo7zuLmQ==
3J1OfDEiMfxgQVZur/neGQ==
Nxv5JOV6nsvg/lfNuk3rWw==
Es1qIvgb4wmPAWwlagmNYQ==

Dop.dat
Fung.dat
song.dat

.zip
/usr/bin/zip
/usr/bin/curl

AES Encryption

extracting embedded strings

25

The Art of Mac Malware: Analysis

p. wardle

In the output above, we find:

■ Strings that reference survey related logic

■ Base-64 encoded strings

■ Uniquely named .dat files

■ References to macOS utilities (used to compress and upload/download files)

■ (AES) encryption

Could this be a backdoor designed to survey and steal files from an infected system?

Likely! (Spoiler: it is). And in fact, if we search online for some of the more unique

strings (such as the misspelled “GenrateDeviceName” string), we find a match:

OSX.WindTail​:

“GenrateDeviceName” matches OSX.WindTail

📝 Note:

Searching online for unique (e.g misspelled) strings can often provide useful results,
such as matches to known malware and analysis reports.

Malware authors are of course free to create whatever strings they like. For example,

perhaps adding many benign sounding strings in an attempt to mask the true nature of a

malicious specimen. Thus, a more comprehensive analysis may be required. However, based

on the simplicity of string extractions and the value they can provide, it’s always wise

to include it as part of your initial binary triage!

Objective-C Class Information

The majority of Mach-O malware is written in Objective-C. Why is this a good thing for us

as malware analysts? Simply put, programs written in Objective-C retain their class

26

The Art of Mac Malware: Analysis

p. wardle

declarations when compiled into (Mach-O) binaries. Such class declarations include the

name and type of:

■ The class

■ The class methods

■ The class instance variables

In other words, the names (of methods, variables, etc.) that the author used when writing

the malware can be extracted from the compiled binary!

Similar to embedded printable strings, this provides (in)valuable insight into many

aspects of the malware (such as its capabilities). Insights that can be extracted

efficiently, without having to understand any binary code!

📝 Note:

As embedded Objective-C class information is (always?) printable strings, this
information will (also) show up via the aforementioned strings command.

However, the tools mentioned in this section (i.e. ​class-dump​) are designed to
specifically extract and reconstruct embedded Objective-C class information, which
provides a representation far nearer to the original malware’s source code.

There are various utilities designed to extract embedded class information from Mach-O

files. A proven favorite is the aptly named ​class-dump​ [13] utility (by Steve Nygard).

Here, for example, we use ​class-dump​ to, extract class information from HackingTeam’s
persistent Mac backdoor, ​OSX.Crisis​ [14]:

$ class-dump RCSMac.app

...

@interface __m_MCore : NSObject
{
 NSString *mBinaryName;
 NSString *mSpoofedName;
}

- (BOOL)getRootThroughSLI;
- (BOOL)isCrisisHookApp:(id)arg1;
- (BOOL)makeBackdoorResident;

27

https://github.com/nygard/class-dump

The Art of Mac Malware: Analysis

p. wardle

- (void)renameBackdoorAndRelaunch;
@end

(abridged) class-dump output

(​OSX.Crisis​)

Without having to understand the syntax of Objective-C class declarations, based on

instance variable and method names alone, we can ascertain that this binary is malicious

and gain insight into its logic. For example, based on the method names

“​getRootThroughSLI​” and “​makeBackdoorResident​,” it is likely that the malware attempts to
elevate its privileges to root and persists a backdoor component (perhaps with “spoofed”

name)!

📝 Note:

The output from class-dump can also provide valuable input for more involved analysis
methods, such as disassembling and/or debugging the binary.

For example, if we’re attempting to figure out how OSX.Crisis persists, it would seem
prudent to begin analysis at the method named “makeBackdoorResident”!

Another malware specimen that readily spills its secret to ​class-dump​ is ​OSX.Xagent​ [15]:

$ class-dump Xagent

@interface MainHandler : NSObject
...
- (void)ftpUpload;
- (void)sendKeyLog:(id)arg1;
- (void)stopTakeScreenShot;
- (void)startTakeScreenShot;
- (void)screenShotLoop;
- (void)takeScreenShot;
- (void)deletFileFromPath;
- (void)execFile;
- (void)createFileInSystem;
- (void)downloadFileFromPath;
- (void)readFiles;
- (void)showBackupIosFolder;
- (void)getInstalledAPP;
- (void)remoteShell;

28

The Art of Mac Malware: Analysis

p. wardle

- (void)getProcessList;
- (void)getInfoOSX;
- (void)getFirefoxPassword;
@end

__attribute__((visibility("hidden")))
@interface InjectApp : NSObject
...
- (void)injectRunningApp;
- (void)sendEventToPid:(id)arg1;
- (BOOL)isInjectable:(id)arg1;
- (id)init;

@end

(abridged) ​class-dump​ output
(​OSX.Xagent​)

Based on method names alone, we can extrapolate the malware’s (likely) features and

capabilities!

📝 Note:

It should be noted that variable and method names of course can be spoofed and/or
obfuscated, and thus should be validated via other analysis methods (e.g. a
disassembler).

However, such manipulations are a good indication that a binary may be malicious (or at
least has something to hide)!

Up Next

In this chapter, we discussed various static analysis tools that can triage unknown

Mach-O binaries and assist in their classification. Such tools can often provide enough

information to answer the question “is this binary known?” (and as such, already

classified as benign or malicious).

However, in the case of a binary appearing to be malicious in nature, yet not matching

any known samples, a more comprehensive static analysis tool is needed. This tool is the

all powerful disassembler.

29

The Art of Mac Malware: Analysis

p. wardle

In the next chapter, we will introduce some reverse-engineering techniques and discuss

how disassemblers (+ decompilers) can be used to fully tear apart any Mach-O binary!

30

The Art of Mac Malware: Analysis

p. wardle

References

1. “OS X ABI Mach-O File Format Reference”

https://github.com/aidansteele/osx-abi-macho-file-format-reference

2. “Parsing Mach-O Files”

https://lowlevelbits.org/parsing-mach-o-files/

3. MachOView

https://sourceforge.net/projects/machoview/

4. "Let's Build A Mach-O Executable"

https://mikeash.com/pyblog/friday-qa-2012-11-30-lets-build-a-mach-o-executable.html

5. “Overview of the Mach-O Executable Format”

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/Co

deFootprint/Articles/MachOOverview.html

6. WhatsYourSign

https://objective-see.com/products/whatsyoursign.html

7. VirusTotal

https://www.virustotal.com/

8. “Code Signing”

https://developer.apple.com/support/code-signing/

9. “Analyzing OSX/CreativeUpdater”

https://objective-see.com/blog/blog_0x29.html

10. Code Signing – Hashed Out
https://papers.put.as/papers/macosx/2015/CodeSigning-RSA.pdf

11. Technical Note TN2206: macOS Code Signing In Depth

https://developer.apple.com/library/archive/technotes/tn2206/_index.html

12. String’s man page

 x-man-page://strings

13. Class-Dump

https://github.com/nygard/class-dump

31

https://github.com/aidansteele/osx-abi-macho-file-format-reference
https://lowlevelbits.org/parsing-mach-o-files/
https://sourceforge.net/projects/machoview/
https://mikeash.com/pyblog/friday-qa-2012-11-30-lets-build-a-mach-o-executable.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/CodeFootprint/Articles/MachOOverview.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/CodeFootprint/Articles/MachOOverview.html
https://objective-see.com/products/whatsyoursign.html
https://www.virustotal.com/gui/home
https://developer.apple.com/support/code-signing/
https://objective-see.com/blog/blog_0x29.html
https://papers.put.as/papers/macosx/2015/CodeSigning-RSA.pdf
https://developer.apple.com/library/archive/technotes/tn2206/_index.html
https://github.com/nygard/class-dump

The Art of Mac Malware: Analysis

p. wardle

14. “Building HackingTeam's OS X Implant For Fun & Profit”

https://objective-see.com/blog.html#blogEntry6

15. “From Italy With Love?”

https://objective-see.com/blog/blog_0x18.html

32

https://objective-see.com/blog.html#blogEntry6
https://objective-see.com/blog/blog_0x18.html

