
The Art of Mac Malware: Analysis

p. wardle

(The Art of Mac Malware) Volume 1: Analysis

 Chapter 0x4: Static Analysis (Intro)

📝 Note:

This book is a work in progress.

You are encouraged to directly comment on these pages ...suggesting edits, corrections,
and/or additional content!

To comment, simply highlight any content, then click the icon which appears (to the
right on the document’s border).

1

The Art of Mac Malware: Analysis

p. wardle

Content made possible by our Friends of Objective-See:

Airo SmugMug Guardian Firewall SecureMac iVerify Halo Privacy

Statically analyzing a (suspected) malware specimen involves examining the specimen

without actually running or executing it. Such analysis relies on various static analysis

tools and usually culminates with a disassembler or decompiler.

In this chapter, we’ll comprehensively cover methods of static analysis, starting with

the basics, such as file type identification and extraction from an installation medium.

Once a sample has been extracted (e.g. from a disk image or package), it’s often in one

of two forms: a script or a (Mach-O) binary.

the flow of static analysis

2

https://objective-see.com/friends.html
https://www.airoav.com/
https://www.smugmug.com/
https://guardianapp.com/
https://www.securemac.com/
https://apps.apple.com/us/app/iverify/id1466120520
https://www.haloprivacy.com/

The Art of Mac Malware: Analysis

p. wardle

Because of their “plaintext readability,” scripts are rather easy to manually analyze

...though we’ll still cover various analysis techniques and apply them to real-world

macOS malware samples.

On the other hand, the binary format of Mach-O executables presents some unique

challenges and requires specific analysis tools. As such, a significant portion of this

book is dedicated to both the internals of this file format and corresponding static

analysis tools.

📝 Note:

Is it safe to statically analyze malware on your computer (i.e. not in a virtual
machine)?

Generally yes, as by definition static analysis, is well, static ...meaning the
malicious code is never run.

That having been said, it is still considered best practice to always analyze malware
in a compartmented virtual machine! Better safe than sorry, ya?

For a detailed overview of setting up such a VM, see:

“How to Reverse Malware on macOS Without Getting Infected” [1]

File Type Identification

As noted, most (static) analysis tools are file-type specific. Thus, the first step in

analyzing (what may be) a malicious file is identifying its file type.

Often, malware authors will attempt to mask the true file type of their creation in order

to trick or coerce the user into running it. As such, it goes without saying that looks

can be deceiving and a file’s type should not be identified solely by its appearance

(icon) or what appears to be its file extension.

For example, OSX.WindTail [2] is specifically designed to masquerade as benign Microsoft
Office documents:

3

https://www.sentinelone.com/blog/how-to-reverse-macos-malware-part-one/
https://objective-see.com/blog/blog_0x3B.html

The Art of Mac Malware: Analysis

p. wardle

malware masquerading as Office documents

(OSX.WindTail)

In reality, the file(s) are malicious applications that, when executed, will persistently

infect the system.

At the other end of the spectrum, malicious files may also have no icon, nor file

extension. Moreover a cursory triage of the contents of such files may provide no clues

about the file’s actual type.

For example, here we have a (suspected) malicious file simply named VtZkT [3] ...of some
unknown binary format:

$ hexdump -C VtZkT
00000000 03 f3 0d 0a 97 93 55 5b 63 00 00 00 00 00 00 00 |......U[c.......|
00000010 00 03 00 00 00 40 00 00 00 73 36 00 00 00 64 00 |.....@...s6...d.|
00000020 00 64 01 00 6c 00 00 5a 00 00 64 00 00 64 01 00 |.d..l..Z..d..d..|
00000030 6c 01 00 5a 01 00 65 00 00 6a 02 00 65 01 00 6a |l..Z..e..j..e..j|
00000040 03 00 64 02 00 83 01 00 83 01 00 64 01 00 04 55 |..d........d...U|
00000050 64 01 00 53 28 03 00 00 00 69 ff ff ff ff 4e 73 |d..S(....i....Ns|
00000060 d8 08 00 00 65 4a 79 64 56 2b 6c 54 49 6a 6b 55 |....eJydV+lTIjkU|
00000070 2f 38 35 66 51 56 47 31 53 33 71 4c 61 52 78 6e |/85fQVG1S3qLaRxn|

4

The Art of Mac Malware: Analysis

p. wardle

00000080 6e 42 6d 6e 4e 6c 73 4f 6c 2b 41 67 49 71 43 67 |nBmnNlsOl+AgIqCg|
00000090 4c 45 76 31 45 53 54 59 46 2b 6c 75 44 69 33 2f |LEv1ESTYF+luDi3/|
000000a0 39 33 31 4a 4f 6b 32 72 75 47 50 74 46 7a 70 35 |931JOk2ruGPtFzp5|

Since static analysis tools are largely file type specific, identifying this file’s type

is imperative in order to continue static analysis. So, how do we effectively identify a

file’s format? Via macOS’s built-in file command. As noted in its man page [4], this
command has one job: to “determine [a] file’s type”:

$ man file

FILE(1) BSD General Commands Manual FILE(1)

NAME
 file -- determine file type

For example, running the file command on the unknown VtZkT file, reveals the file is
byte-compiled Python code:

$ file VtZkT

VtZkT: python 2.7 byte-compiled

More on this soon, but knowing that a file is byte-compiled Python code allows us to

leverage various tools specific to this file format (for example, we can reconstruct a
readable representation of the original python code using a python decompiler).

Returning to OSX.WindTail, we can again use the file utility to reveal that the malicious
files (that masquerade as Office documents) are actually applications bundles, containing

64-bit Mach-O executables:

$ file Final_Presentation.app/Contents/MacOS/usrnode

usrnode: Mach-O 64-bit executable x86_64

Up Next

5

The Art of Mac Malware: Analysis

p. wardle

In this chapter, we introduced the concept of static analysis and highlighted how macOS’s

built-in file utility can effectively identify a file’s true type. This, of course, is an
important first analysis step as many static analysis tools are file type specific!

Next up, let’s look at various file types one is likely to encounter while analyzing Mac

malware. Some file types (e.g. disk images) are simply used to distribute malware and

thus the goal is to extract the malicious contents for analysis. The actual malware comes

in various other file formats, such as scripts and binaries.

For each file type, we’ll briefly discuss its purpose, as well as highlight static

analysis tools that can be used to analyze said file format.

6

The Art of Mac Malware: Analysis

p. wardle

References

1. “How to Reverse Malware on macOS Without Getting Infected”
https://www.sentinelone.com/blog/how-to-reverse-macos-malware-part-one/

2. “Middle East Cyber-Espionage: Analyzing WindShift's implant: OSX.WindTail”

https://objective-see.com/blog/blog_0x3B.html

3. “Mac Adware, à la Python”

https://objective-see.com/blog/blog_0x3F.html

4. file utility

x-man-page://file

7

https://www.sentinelone.com/blog/how-to-reverse-macos-malware-part-one/
https://objective-see.com/blog/blog_0x3B.html
https://objective-see.com/blog/blog_0x3F.html

